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Abstract

In this paper, we consider a nonlinear integro-differential problem
with a zero operator of the differential part, the integral operator of which
contains a rapidly changing kernel, and the right-hand side depends on a
rapidly oscillating exponent. This work is a continuation of the research
carried out earlier for a similar linear system with a rapidly changing
kernel. In the nonlinear case, the conditions for the solvability of the

Received: March 4, 2025 © 2025 Diogenes Co., Sofia



476  A. Bobodzhanov, B. Kalimbetov, V. Safonov, D. Sapakov

corresponding iterative problems, as in the linear case, will have the
form not of differential (as was the case in problems with a nonzero
operator of the differential part), but of integro-differential equations,
and the formation of these equations is played by nonlinearity and rapidly
oscillating inhomogeneity.
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1. Introduction

In this work, the regularization method of S.A. Lomov [28],29] is gen-
eralized for problems for an integro-differential equation with a rapidly
changing kernel and with a right-hand side depending on a rapidly oscil-
lating exponent

1t
1 [ (0)
S

‘Llu

- o ts)y(s.)ds +<f (3.1 "
+h1( ) + ha(t)e i”, y(0,e) = 4°, t € [0,T).

The work is a continuation of the research carried out earlier for a linear
problem with a zero operator of the differential part [4], as well as for
nonlinear integro-differential equations with a zero operator of the dif-
ferential part and with several rapidly changing kernels [5]. In the case
of the problem (1.1), the singularities in its solution are described by
the spectral values of the kernel and rapidly oscillating inhomogeneities.
However, the influence of the zero operator of the differential part affects
the fact that in the first approximation the asymptotics of the solution
of the problem under consideration will not contain boundary layer func-
tions, and the limit operator itself will be degenerate (but not zero). In
this case, the conditions for the solvability of the corresponding itera-
tive problems, as in the linear case, will have the form not of differential
(as was the case in problems with a nonzero operator of the differential
part), but of integro-differential equations, and nonlinearity plays an es-
sential role in the formation of these equations. In this case, so-called
resonances can arise, which significantly complicate the development of
the corresponding algorithm of the regularization method. In this paper,
we consider the nonresonant case. It is assumed that the study of an
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alternative variant (a more complex resonance problem) will be carried
out in the future.

Problem (1.1) is considered under the following conditions:

(1) p(t), B'(t) € C=([0,T], R), hq(t), ha(t) € C([0,T],C),
K(t,s) e C*(0<s<t<T,R);

(17) u(t) <0,6'(t) >0 vtel0,T];
(ii) f(y,t) is a polynomial, i.e.

N

fly,t) = Z fm()y™

m=0
with the coefficients f,,(t) € C* ([0,7],R),m =0, N, N < co.

As mentioned earlier, this work is a continuation of the studies [6, [7]
carried out earlier for one rapidly changing kernel. In contrast to the
linear case, on the right-hand side of problem (1.1), there is no inho-
mogeneity ¢(t) (without a coefficient ¢). Its presence in the problem
(1.1) would entail the appearance in the asymptotic solution of terms
with negative powers of the parameter ¢, and in the nonlinear case there
would be an innumerable set of such powers, and the corresponding for-
mal asymptotic solution would have the form of a Laurent series. This
would make the development of an algorithm for asymptotic solutions
problematic; therefore, in the present work, wishing to remain within
the framework of asymptotic solutions of the Taylor series type, inhomo-
geneity g(t) (without a coefficient ¢) is excluded.

A generalization of the idea of the regularization method for singu-
larly perturbed integral and integro-differential equations with rapidly
oscillating coefficients is considered in [8, O, 13, 17, 19, 20, 21], with
slowly varying coefficients, but with rapidly oscillating inhomogeneities,
in [3, 10, 11, 12, 14, 15, 16, 18, 25, 27].Singularly perturbed integro-
differential partial differential equations have been studied in [22] 23] 20],
and singularly perturbed differential, integro-differential equations with
fractional derivatives - in papers [1], 24].

Turning to the development of the algorithm, we note that throughout
the work, column vectors are written in curly brackets, and row vectors
are written in simple brackets.
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2. Equivalent integro-differential system and its regularization

We introduce a new unknown function

-/

Differentiating it by ¢, we will have

m\»—t

[ne K(t,s)y(s,e)ds.

t
L1 (00 ey
+ [e e 8K8(tt’ )y(s,a)ds
0
t
LLn0)d0 ppeqs o
& e% = pu(t)z +5K(t,t)y+5b[e s %y(s,e)d&

Instead of (1.1), we get the system

t L[ u(0)do
el = At)w+eA(H)w+e [e [ G(t, s)w(s,e)ds (2.1)

0
+eF(w,t) + H(t,e), w(0,e)=uw’={y° 0},

where w = {y, 2}, F(w,t) = {f(y,1),0}, H(t, &) = {h(t)+ha(t)e =", 0},

and the matrices A(t), A;(t), G(t, s) are of the form

A@:(ghw)&@:(%@og)

For convenience, let us denote A;(t) = i8'(t), A2(t)=u(t). We introduce
regularizing variables (see [28])
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and consider the following problem:

= oT;j
t
t L[ x2(6)do . s 2.2
=cfe [ G(t,s)w(s, ¢£),€)ds, (22)
0
0

ﬁ}(t,T , 0, 8)| iB(0

t=0,7=0,0=e" ¢

Il
S

where H(t,7) = {hi(t) + hao(t)e™ 0,0}, 0 = 7O for the function @ =
w(t,7,0,¢), where 7 = (11,72), ¥ = (¢1,12). It is clear that if w =
w(t,7,0,¢) is the solution to problem (2.2), then the vector function
w=w (t, @, o, 6) is an exact solution to problem (2.1); therefore, the
problem (2.2) is extended with respect to the problem (2.1).

However, the problem (2.2) cannot be considered completely regular-
ized, since the integral operator

0= J (678, ,_s0 )
t
!

A2 (6)do

<

m =

(&

G(t,s)w (s, 1/)(8),8) ds

=&
€

o o

is not regularized. To regularize it, we introduce a class M. == U|__uw,
that is asymptotically invariant with respect to the operator J (see [2§],
p. 62]).

In this case, we take U as the space of vector functions representable
by sums of the form

w(tv T, U) = wO(tv O) +

J
+ 3 w™(t, o)e™),
|m[>2

e C>([0,T],R), j=0,2, 2<|m|<N,.

wj(t,o)e”

w(t0), w1, 0) (2.3)

Here m = (my, ms) is a multi-index, |m| = m; + mq. Let us show that
the class M., is asymptotically invariant with respect to the operator J.
To do this, it is necessary to show that the image Jw(t,7) on functions
of the form (2.3) can be represented as a series

Jw(t,T) = i&k (Z wy(t)e™ + w,(co)(t)>

$()

5

T=
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converging asymptotically to Jw (as ¢ — +0) uniformly with respect to
t € [0, T]. Substituting (2.3) in Jw(t, T), we have

1 [ xa(0)d0 L (A1 (0)~22(0))d6
+e § /G(t,s)wl(s)e {2 ds

t
G(t,s)wo(s
Jo(t,e) = ee Of (iA)Q(so)( ) de
s s=t
- ift 22080 | Gy spug(s) % H2(0)d0
= ce W)
s=0

t ~1 [ Ay(0)d6
9 G(t,s)wo(s) E
—{ <$—_)\2(§) )e 0 ds]

,\2(9)d9]

t s
(j)’M(@)dei <2 G(t,s)wo(s)) e—gof,\z(e)de
s —Xa(s)

1
€

e

Ot — o

. [G(uowo(t) _ G10w)
—)\Q(t) —X2(0)
1

s.
Continuing this process further, we will have
Jo(t, ) = Z;)€”+l(-1)”[(IS(C?(t,S)um(S)))szt
1 ng (0)d9]
0

bl

where

9= Iy = —Iy (v > 1)
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t s
i{&(e)d@/ G(t S wl(s) dei 0f(>\1(9)—>\2(9))d9
0

Ji(t,e) = ee .
59 M(5) — Aals)
t s s=t
__ s | Gl wi(s) oo
Ai(s) = Aa(s) -
t S
_/ 0 G, s)wi(s) egg(h(@)—kz(G))deS
0s Ai(s) — Aa(s)
0
Gt Dwi(t) Gt 00w (0) 2 [re@)ds
= — e o
A(t) — Aa(t)  A1(0) — A2(0)

t t s

0w / 0 G(t,s)wi(s) \ L@ -ra0)a0

—ce 0 —— < ]e ds.
0s A1(s) — Aa(s)

Continuing this process further, we will have

SN 1 [ A (0)do
=S ) | (G ) (5))), e
v=0
,, s fouo
(G syun(s))) e 0|
where
1 1 0
Be e = i 2 1),
I WS B WS L Bl W B WS 1P SR

And similarly, we will have:

In(t ) = ce
( )
0
t s s=t
Lixe@ade | Gt s)w™(s) LS A2(6))d6
—ce 0O e 0
(m, A(s)) = A (s)
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G(t, tyw™ (¢) joft Wi GELOw™(0) Frau

(m, A1) = Aa(t) (m, A(0)) = A2(0)

t t s

L [ Aa(6)d6 / 0 G(t,s)w™(s) L [((mA(0)—r2(8))do

—ce © J— e o d
s (m, A(s)) — Aa(s)

= £

S.

Continuing this process further, we will have

- igwl(—l) (I%(G(t,s)w(m)(s)»s:te%g(m, 0))
_(I’I;T(G@’S)w(m)(s)))sOelg&(g)w] |
where
0 _ 1 , . ) 1
T A ) T ) el 05

2<|m| <N, (v>1).

Hence, the image of the operator J on an element (2.3) of the space U
can be represented as a series

Jw(t,T) = 1”2(9 deftG t,s)ws(s)ds
+ Z e (=1)" (L5 (G(t, s)wo(s))) s

1 [ \s(0)d0
— (L5 (G(t, s)we(s))) e ©
N ) 1 a(0)d6
+ Z 61/+1( 1) (If(G(t,S)wl(S)))s:te ’
v=0
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It is easy to show (see, for example, [30], pp. 291-294) that this series
converges asymptotically for ¢ — +0 (uniformly in ¢ € € [0,7]). This
means that the class M. is asymptotically invariant (for ¢ — 40) with
respect to the operator J.

Let us introduce the operators R, : U — U, acting on each element
y(t,7) € U of the form (2.3) according to the law:
¢
Row(t,7) =¢e™ [ G
0
G

Ryw(t, 7) = [(Ig (
+ (7 (Gt s)un (s

- % [(I9.(G(t,s

m|>2

N
+ | |Z (=1)" [(In(G(t, s)wt™(s))) _ ™D (2.4)
m|>2
— (Iﬁl(G(t, s)w(m)(s)))szoe”} , v>1.
Then the image Jw(t, T) can be written in the form
Jw(t,7) = Ryw(t, ) + Z e"M Ry w(t, 7), (2.5)
m=0
where 7 = Y9 Let us now extend the operator J to series of the form

€

w(t,me) = wilt,7) (2.6)

with coefficients wy(t,7) € U, k > 0.

A formal extension J of the operator J on series of the form (2.6) is
the operator

Jo(t,re) 2N "SR, aw,(t, 7). (2.7)
v=0 s=0

Despite the fact that the extension .J of the operator J is defined formally,
it is quite possible to use it in constructing an asymptotic solution of finite
order of . Now it is easy to write out the regularized (with respect to
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(2.2)) problem:

58t+zx\() — A(t) — e Ay () — eJb
—EF(U) t)—i—H(t T), w(t,T,0,¢)] o) = w°

t=0,7=0,0=e" ¢

(2.8)

where .J is the operator (2.7).

3. Solvability of iterative problems

Substituting series (2.7) into (2.8) and equating the coefficients at the
same degrees of €, we obtain the following iterative problems:

Lowo(t, 7') Z )\ ( )% — A(t)wg
(hl( )+ h2(t)€n‘7) , wp(0,0) = w’; .

0
3w0

Lowl(t,T) = _E_'_Al( )U}0+F(w0,t)+R0w0, (3 11)

w1(0,0) = 0;

ow OF (wq, t

L0w2<t,7') _a_tl + Al( )U)l + %wl + R0w1 (3 12)

+R1’UJ0, U)Q(O, O) = 0;
Lowk(t, 7_) 8’!Uk 1 + Al( )wk—l + Pk(wo, e ,'LUk_]_7 t) (31k)

+Rowy—1 + lek 2+ ...+ Rpwo, wi(0,0)=0,k>1,
where Py (wy, ..., w_1,1) is some polynomial of wy, ..., w,_1, linear with
respect to wg_1.

Passing to the formulation of theorems on the normal and unique
solvability of the iterative problems (3.1;), we calculate the eigenvectors
@;(t) and x;(t) of matrices A(t) and A*(t), respectively. It is easy to
check that they have the form

eolt) = {10}, wa(t) = {751} = {51}
o) = {L =5} = {15 }» e® ={0.1},

and @ (t), p2(t) correspond to the eigenvalues Ao(t) =0, \o(t) = = pu(t)
of the matrix A(t), and xo(t), x2(t) correspond to the elgenvalues o(t) =
0, Ao(t) = u(t) of the matrix A*(t), respectively.

(3.2)
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Each of the iterative systems has the form

2

ow
%Muﬂzgg&@ga—A@w—Pmﬂ, (3.3)
2 Np
where P(t,7) = Py(t) + 3. Pj(t)e™ + > P (t)e™") € U.
Jj=1 Im|>2

THEOREM 3.1. Let conditions 1) — 3) be satisfied and P(t,7) € € U.
For system (3.3) to have a solution in U it is necessary and sufficient that

(Py(t),x; (1) =0, j=0,2, ¥t €[0,T). (3.4)

P r oo f We will define the solution of the system (3.3) in the form
of the sum (2.4). Substituting (2.4) into (3.3), we obtain the equality

A (E)wy (£)e™ + A (t)wa(t)e™ + 3oy maw(™ (£)e™ ™)
+ % mow™ ()™ ™) — A(t)wo(t) — A(t)wy(t)e™ — A(t)wy(t)e™

|m|=2
-3 A(t)w(m)(t)e(m,‘r) =DP(t)+ Y Pj(t)eTj + 3 pm) (t)e(m,-r)7
Im|=2 j=1 |m|>2

—AJ(Vt)wo(t) + [M ()T — A(t)] wi(t)e™ + [No(t)] — A(t)] wo(t)e™
+ 30 [(m A0 — A()] w™ (¢)elm)

m|=2

= Po(t) + 232:1 P;(t)e™ + nyﬁzz P (¢)elmm),

Due to the linear independence of the exponentials e™, e, e™7) (|m| >
2), this equality takes place only at N, = Np. Equating separately the
coefficients at the same exponents and free terms, we will have

—Ab)wo(t) = Ry(t), (3.50)
(MO = A®)]w;(t) = Py(t), j=12, (3.55)

[(m, AT = AB)]w™ (1) = PU™(t), 2 < |m| < Np. (3-5m)
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Let @ (t) = (po (t), @2 (t)) be the matrix of eigenvectors of the oper-
ator A(t), and A(t) = diag(0, Ao(t)). In system (3.59) we make a trans-
formation wy(t) = ®(t)n = (po(t), v2(t)) {n',n*}, we obtain the system

= 0-n" = (Po(t), xo(t))
—At)yn =07 (t)P(t) & ’ ’
on=e0n0 = {0l 2 CON )
For the solvability of this system, it is necessary and sufficient that iden-
tity (3.4) holds for 7 = 0. Then the solution of the last system will be as
follows:
nt(t) = ap(t) € C*([0,T],C) is an arbitrary function,
P
2 (t) = M’
—a(t)

W%(ﬂ- (3:6)

Since A1 (t) is not an eigenvalues of the matrix A(t), the system (3.5;)
is uniquely solvable in the space C* ([0, T], C?) :

wi(t) = ()] — A@)] 7 Pi(t)

therefore
wo(t) = ap(t)po(t) +

(P1(0)x0(1)) (Pr(0).x2(8)) 37)
Py (£),x0(t Pi(),xa(t

- /\1(>§§) wo(t) + ,\ll(t)jgi(t) pa(t).

Let us turn to system (3.52). Making a transformation wsy(t) == ®(t)¢
O(t) - {€1, €%} in it, we get the system

Do()I — A(t)]n =7 (1) P(t) & { AQéé)gziz(p(j(ji)g Z(;E;f))(;))

For the solvability of this system, it is necessary and sufficient that iden-
tity (3.4) holds for 7 = 2. Then the solution of the last system will be as
follows:
&(t) = as(t) € C* ([0, T],C) is an arbitrary function,
fl(t) _ (PQ(t)7 XO(t)) ’
Aa(t)

(2(t), xo(t))
Ao (1)
Since conditions of the absence of resonance are satisfied, system (3.5,,)

has a unique solution for each m (2 <|m| < Np) :

w™(t) = [(m, A1) — A®)] " P™(t), 2< |m| < Np. (3.9)

therefore

wa(t) = aa(t)pa(t) + (3.8)
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Thus, for the solvability of the system (3.3) in U it is necessary and
sufficient to satisfy conditions (3.4). O

Remark 1. If conditions (3.4) are satisfied, then, as can be seen
from (3.6) — (3.9) (taking into account wy(t) = ®(t)n, wq(t) = = P(t)E,
that system (3.3) has the following solution in the space

w(t,T) = ap(t)go(t) + LD (1) 4 | BN 4 7

Pi(t), T Blb), i
+%¢2(tﬂ et [0‘2(t)%02(t) + %%(ﬂ] " (310)

where «a;(t) € C* ([0,7], C) are arbitrary functions, j = 0, 2.

We will not prove the unique solvability of iterative problems. Note
that when solving two consecutive iterative problems (3.5,,) and (3.5,,11),
the solution to the problem (3.5,,) in the space U will be found uniquely.

4. Construction of solutions to iterative problems

Consider the first iterative problem and construct its solution in the
space U. Since the right-hand side P(t,7) = PO(t,7) + PO(t,7)+
+PA(t,7) = {hi(t) + +ha(t)e™o,0} in it that is, the orthogonality
conditions (3.4) for the problem are fulfilled automatically. Therefore,
the problem (3.1p) has the following solution (see formula (3.10)):

wo(t,7) = oy ()go(t)

H(t), H(), .
[ - g0 )

oy (1) pa(t)e™,

where 045»0) (t) € C*([0,T], C) for now, are arbitrary functions, j = =0, 2.
Subjecting (4.1) to the initial condition w(0,0) = w°, we will have

0 H(0), H(0),
O‘(() )(0)900(0) + |[EQhxe(®) (2)1(’8(0”900(0) + —&1((3))3‘52(?3)) @2(0)] o

+ad ) (0)pa(0) = w° &
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& af (0)p0(0) + | IR0 0)] 0

0 H(0), 0
0§ (0)p2(0) + | B24N 0a(0)| o = w.

Multiplying this equality scalarly by xs(0),s = 0,2, we have

o’ (0) = (', xo(0)) [ ]U’
R TR

In this case, the system (3.1;) takes the form

Lown(t,7) =~ (af (H)o(®)

i [(H(;)l,ég(t»%(t) 4 &?éf;&;ﬁii m(t)} gem

+af(Oga(t)e ) + A1) (o (B)p0(t)

+ [ RO (1) + 3% ea(0)] 0e™ +a (Dea(t)em)  (43)
+F (af (Bpo(t) + | L9280 g (1) + LR, (1)] e

+ai (t)ps(t)e™, t>

+e™ f(f G(t, s)aéo)(s)gpg(s)ds + H(t)e™o = P(l)(t, 7).

This system will be solvable in the space U if and only if the free term
Py(t) and coefficient P5(t) at the exponential e™ (measurement of |m| =
1) in its right-hand side P! (¢, 7) satisfies the orthogonality conditions
(3.4). Select in the right-hand side functions Py(t) and PM (¢, 7). Using
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the Taylor formula, we will have

0 H(t), H(t)o, T
P (af 0o(t) + [HE280 00 (1) + GOzl (1)) e

+a (t)a(t)e™, t) =F (0‘80)(”900@)’ t)
aF (ol (1)t
A2 04y (e + (e, 1),

where the function r(e™,t) contains terms with ™) of dimension |m/| >
2. Then we obtain

POt 1) = Py(t) + P (t)e™
=~ (a®ro®) + A1) (o D00®)) + F (af (1))
~ (' e20) e + A1) (o a(0)e™ )

oF (1), !
- (aw >oz§0)(t)g02(t)eT2 +6T2/G(t,s)ago)(s)g@(s)ds.
0

Now it is easy to write out orthogonality conditions (3.4) for problem
(4.3) (take into account that ¢(t) =0) :

i (1) = (A (Opo(t), xo(t)ad” (8) + F (ol (Do), xo(t)):t)

@ (t) = (A1()pa(t) — @2(1), xa(t))ad (¢)

t

+ [(G(t, 8)pa(s). xa(s))as (s)ds

0

Fal” (t)po(t)t 0
i <Wmt>,>@<t>) o0 ().
(4.4)

The second equation (4.4), together with the zero initial condition (4.2),
is a linear integro-differential Cauchy problem with coefficients continu-
ous on the segment [0, 7], therefore it has the solution ai”(t) = 0. For

the function o (t) we obtain the nonlinear Cauchy problem (take into



490  A. Bobodzhanov, B. Kalimbetov, V. Safonov, D. Sapakov

account the form A;(t) and ¢q(t) = {1,0})

a(t) = =200 (1) + £ (ol (Do), xo (D), )
(4.5)
of)(0) = (u, xo(0)) — [HO2a(0)]

which solvability in the whole on a segment [0, 7] is problematic. The
study of this problem is an independent and very nontrivial problem.
Therefore, we introduce one more condition:

4) Problem (4.5) is solvable on the interval [0,T].

In this case, the solution (4.1) of the first iterative problem (3.1y) will
be found in the space U in the form

wolt, 7) = af (H)po(t) +

It, as mentioned above, does not contain boundary layer functions. As
for the following iterative problems (3.1;),k > 1, for them the equation
for the functions agk) (t) (k=1,2,3,...,) will be linear, and therefore their
solvability in the whole on a segment [0, 7] is obvious.

Remark 2. Condition 4) will be satisfied (see [2], pp. 412-413) if
we require that there exist a constant -y such that for all (¢,y) € [0,T]xR
the inequality

K(t.t) | 9f(y.1)

Tl oy =7 (46)

holds. This inequality holds, for example, for the problem

t
iB(t)

d s—t
Y = / S K, s)y(s,)ds — g + WD), y(0,) =40, (4.7)
0

Inequality (4.6) in this case has the form

K(t,t)—3y> <~ & —3y* < v — K(t,1).
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It is fulfilled if we take a constant v > 0 so that v > rrfeuT(] K(t,t). In this
telo,

case, problem (4.5) will have the following solution

0 H(0)oxo(0)] _ h(0
where Oz(() )(0) =0 — [—( (/\)1(830( ))} =" - Z.ﬁ,((g)a.

Under conditions 1) — 4), one can construct series (2.6) with coeffi-
cients wy(t,7) € U. As in [6] [7], we prove the following result.

THEOREM 4.1. Let conditions 1) — 4) be satisfied for the system
(2.1). Then, for € € (0,e0]|(g0 > 0 is sufficiently small), the system (2.1)
has a unique solution w(t,e) € C*([0,T], C?) and the estimate

lJw(t,e) — waN(lf)HC[o,T] < CN5N+1,N =0,1,2,...

holds; here w.n(t) is the restriction (at the T = @) of N-th partial
sum of series (2.6) (with coefficients wy, (t, ) € U, satisfying the iterative
problems (3.1;)), and the constant ¢y > 0 does not depend on ¢ at
e € (0,¢e0).

Since the solution y(t,e) of the original problem (1.1) is the first
component of the vector function w(t, ), then for it (under conditions 1)
—4)), the estimate

lly(t,€) = yen()l|com) < eneME N =0,1,2, ..,
holds, where ¢y > 0 does not depend on ¢ at € € (0, ¢].

Example. Applying the algorithm developed by us for the integro-
differential problem (4.7), we obtain the following leading term of the
asymptotics of the solution to this problem:
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N h(t) C
i)
where oz(()o)(O) =y’ - igf?g)a. Hence, it can be seen that the exact

solution y (¢,¢) of the problem (4.7), leaving the point y = 3° at the
moment ¢ = 0, performs fast oscillations at ¢ — +0 about function (4.8)
on a half-interval (0,77, without tending to any limit. Function (4.8) is
an analogue of the degenerate solution of problem (4.7). However, it is
impossible to obtain it from (4.7) at € = 0. This distinguishes singularly
perturbed problems with a zero operator of the differential part from
classical problems like
t
t 1
et =A@y + [ "R (s s (1)
0

+h(t)e ™, y(0,e) = y°

with nonzero operator A (t) .
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