DOI: 10.12732/ijam.v38i4.4
ON SOLVING VOLTERRA
INTEGRO-DIFFERENTIAL EQUATION
USING NEW MODIFIED ADOMIAN
DECOMPOSITION METHOD
Asiya Ansari1, Najmuddin Ahmad2,*, Ali Hasan Ali3,4,5
1Department of Mathematics and Computer Science
Babu Banarasi Das University, Lucknow - 226028, INDIA
2Department of Mathematics & Statistics
Integral University, Lucknow - 226026, INDIA
3Department of Mathematics
College of Education for Pure Sciences
University of Basrah, Basrah - 61001, IRAQ
4Technical Engineering College
Al-Ayen University, Dhi Qar - 64001, IRAQ
5Department of Business Management
Al-imam University College, Balad - 34011, IRAQ
Abstract. A novel and reliable semi-analytical method to solving Volterra integro-differential equations is presented in this study. A new modified Adomian Decomposition Method is described in this paper. By presenting some examples and plotting the error function and comparison between the exact and approximate solutions, we show the ability, simplicity, and effectiveness of this method.
How
to cite this paper?
DOI: 10.12732/ijam.v38i4.4
Source: International Journal of Applied Mathematics
ISSN printed version: 1311-1728
ISSN on-line version: 1314-8060
Year: 2025
Volume: 38
Issue: 4
References
[1] J. Manafianheris, Solving the integro-differential equations using the modified Laplace Adomian decomposition method, Journal of Mathematical Extension, 6, No 1 (2012), 1–15.
[2] B. N. Saray, An efficient algorithm for solving Volterra integro-differential equations based on Alpert’s multi-wavelets Galerkin method, Journal of Computational and Applied Mathematics, 348 (2019), 453–465; doi: 10.1016/j.cam.2018.09.016.
[3] M. Olayiwola, F. Akinpelu, and A. Gbolagade, Modified variational iteration method for the solution of a class of differential equations, American Journal of Computational and Applied Mathematics, 2, No 5 (2012), 228–231; doi: 10.5923/j.ajcam.20120205.05.
[4] A. I. Alaje, M. O. Olayiwola, K. A. Adedokun, J. A. Adedeji, and A. O. Oladapo, Modified Homotopy perturbation method and its application to analytical solitons of fractional-order korteweg–de Vries equation, Beni-Suef University Journal of Basic and Applied Sciences, 11, No 1 (2022), 139; doi: 10.1186/s43088-022-00317-w.
[5] A. A.-E. Ibrahim, A. A. S. Zaghrout, K. R. Raslan, and K. K. Ali, On the analytical and numerical study for nonlinear Fredholm integro-differential equations, Applied Mathematics & Information Sciences, 14, No 5 (2020), 921–929; doi: 10.18576/amis/140520.
[6] N. Sweilam, Fourth order integro-differential equations using variational iteration method, Computers & Mathematics with Applications, 54, No 7 (2007), 1086–1091.
[7] A. Ansari, N. Ahmad, Numerical accuracy of Fredholm linear integro-differential equations by using Adomian Decomposition Method, Modified Adomian Decomposition Method and Variational Iteration Method, Journal of Science and Arts, 23, No 3 (2023), 625-638.
[8] A. Ansari N. Ahmad, Numerical Accuracy of Fredholm integro-differential equations by using Adomian Decomposition Method and Modified Adomian Decomposition Method, Bull. Cal. Math. Soc., 115, No 5 (2023), 567-578.
[9] A. Ansari, N. Ahmad, F. Deeba, Application of the direct computation method for solving a general Fredholm integro-differential equations, Global and Stochastic Analysis, 11, No 1 (2024), 65-74.
[10] A. Ansari, N. Ahmad, Numerical solution for nonlinear Volterra-Fredholm integro-differential equations using Adomian and Modified Adomian Decomposition Method, Transylvanian Review, 31, No 2 (2023), 16321-16327.
[11] A. Ansari, N. Ahmad, H.A. Ali, Numerical Study of the Series solution method to analysis of Volterra integro-differential equations, J. Appl. Math. & Informatics, 42, No 4 (2024), 899-913.
[12] A. Ansari, N. Ahmad, Approximate solution of fuzzy Volterra integro-differential equations using numerical techniques, Applications and Applied Mathematics: An International Journal (AAM), 19, No 4 (2024), 1-15.
[13] N. Ahmad, B. Singh, A. Ansari, Numerical solution of integral equation by using Picard method, homotopy and modified Adomian Decomposition Method, Ganita, 74, No 2 (2024), 349-360.
[14] J. Chen, M. He, Y. Huang, A fast multiscale Galerkin method for solving second order linear Fredholm integro-differential equation with Dirichlet boundary conditions, Journal of Computational and Applied Mathematics, 364, (2020), 112-352.
[15] N. Rohaninasab, K. Maleknejad, R. Ezzati, Numerical solution of high-order Volterra–Fredholm integro-differential equations by using Legendre collocation method, Applied Mathematics and Computation, 328, (2018), 171–188.
[16] S. M. Yassein, Application of iterative method for solving higher order integro-differential equations, Ibn AL-Haitham Journal for Pure and Applied Sciences, 32, No 2 (2019), 51–61.
[17] M. O. Olayiwola and K. Kareem, A new decomposition method for integro-differential equations, Cumhuriyet Science Journal, 43, No 2 (2022), 283–288.
[18] M. Olayiwola, A. Gbolagade, and F. Akinpelu, An efficient algorithm for solving the nonlinear PDE, International Journal of Scientific and Engineering Research, 2, No 10 (2011), 1–10.
[19] R. Amin, I. Mahariq, K. Shah, M. Awais, and F. Elsayed, Numerical solution of the second order linear and nonlinear integro-differential equations using Haar wavelet method, Arab Journal of Basic and Applied Sciences, 28, No 1 (2021), 12–20.
[20] A. Majid Wazwaz, A First Course in Integral Equations (2nd edition), ISBN-978-981-4675-11-16, 122-130 (2015).
[21] A. Majid Wazwaz, A reliable modification of Adomian decomposition method Applied Mathematics and Computation, 102, No 1 (1999), 77-86.
IJAM
o Home
o Contents