ON R-COMPLEX FINSLER SPACES
WITH SPECIAL (α, β)-METRIC

Abstract

In the present paper, the notion of $\mathbb{R}$-complex Finsler space with special $(\alpha, \beta)$-metric $\alpha + \epsilon \beta + \lambda \frac{\beta^2}{\alpha}$ (where $\epsilon, \lambda \neq$ 0 are constants ) which is the generalization of Randers metric and Z. Shen's square metric is defined. The fundamental metric tensor fields $g_{ij}$ and $g_{i\bar{j}}$ and their determinants and inverse tensor fields are obtained. Some examples of non-Hermitian $\mathbb{R}$-complex Finsler spaces with the special $(\alpha, \beta)$-metric are given.

Citation details of the article



Journal: International Journal of Applied Mathematics
Journal ISSN (Print): ISSN 1311-1728
Journal ISSN (Electronic): ISSN 1314-8060
Volume: 29
Issue: 5
Year: 2016

DOI: 10.12732/ijam.v29i5.8

Download Section



Download the full text of article from here.

You will need Adobe Acrobat reader. For more information and free download of the reader, please follow this link.

References

  1. [1] M. Abate, G. Patrizio, Finsler Metrics - A Global Approach, Lecture Notes in Math., 1591, Springer-Verlag (1994).
  2. [2] T. Aikou, Projective flatness of complex Finsler metrics, Publ. Math. Dereccan, 63 (2003), 343-362.
  3. [3] N. Aldea, Complex Finsler space of constant holomorphic curvature, Diff. Geom. and its Applications, Proc. Conf. Prague 2004, Charles Univ. Prague (Czech Republic) (2005), 179-190.
  4. [4] N. Aldea, G. Munteanu, On complex Finsler spaces with Randers metric, J. Korean Math. Soc., 46, No 5 (2009), 949-966.
  5. [5] N. Aldea, M. Purcaru, R-complex Finsler space with (α, β)-metric, Novi Sad J. Math., 38, No 1 (2008), 1-9.
  6. [6] D. Bao, S.S. Chern, Z. Shen, An Introduction to Riemann-Finsler Geometry, Graduate Texts in Math., 200, Springer- Verlag, 2000.
  7. [7] D. Bao, C. Robles, On Randers spaces of constant flag curvature, Rep. Math. Phys., 51 (2003), 39-42.
  8. [8] M. Fukui, Complex Finsler manifold, J. Math. Kyoto Univ., 29, No 4 (1989), 609-624.
  9. [9] S. Kobayashi, C. Horst, K.H. Wu, Complex Differential Geometry, Birkhauser Verlag (1983).
  10. [10] M. Matsumoto, Theory of Finsler spaces with (α, β)-metric, Rep. on Math. Phys., 31 (1991), 43-83.
  11. [11] R. Miron, General Randers spaces, Kluwer Acad. Publ., FTPH 76 (1996), 126-140.
  12. [12] R. Miron, B.T. Hassan, Variational problem in Finsler spaces with (α, β)metric, Algebras Groups and Geometries, 20 (2003), 285-300.
  13. [13] G. Munteanu, Complex Spaces in Finsler, Lagrange and Hamilton Geometries, Kluwer Acad. Publ., FTPH 141 (2004).
  14. [14] G. Munteanu, M. Purcaru, On R-complex Finsler spaces, Balkan J. Geom. Appl., 14, No 1 (2009), 52-59.
  15. [15] V.S. Sabau, H. Shimada, Remarkable classes of (α, β)-metric spaces, Rep. on Math. Phys., 47, No 1 (2001), 31-48.