In this paper, we study a capacity theory based on a definition of a Riesz
potential in the Euclidean space. Also, we define the Riesz
-capacity and discuss the properties of the capacity in the
variable exponent Lebesgue space
.
You will need Adobe Acrobat reader. For more information and free download of the reader, please follow this link.
References
[1] D.R. Adams, Sets and functions of finite Lp capacity, Indiana Univ. Math. J., 27 (1978), 611-627.
[2] D.R. Adams, L.I. Hedberg, Function Spaces and Potential Theory, Springer-Verlag (1996).
[3] H. Aikawa, M.R. Essen, Potential Theory: Selected Topics, No 1633, Springer (1996).
[4] I. Aydın, Weighted variable Sobolev spaces and capacity, Journal of Function Spaces and Applications, 2012 (2012), Article ID 132690, 17 pages,
doi:10.1155/2012/132690.
[5] G. Choquet, Theory of capacities, Ann. Inst. Fourier, 5 (1954), 131-295.
[6] L. Diening, P. Harjulehto, P. Hästö, M. Růžička, Lebesgue and Sobolev Spaces with Variable Exponents, Springer-Verlag, Berlin (2011).
[7] S. Erdogan, Functional Analysis, Springer Netherlands (2003).
[8] B. Fuglede, On the theory of potentials in locally compact spaces, Acta. Math., 103 (1960), 139-215.
[9] S. Kakutani, Weak convergence in uniformly convex spaces, Tohoku Math. J. (2), 45 (1938), 188-193.
[10] O. Kováčik, J. Rákosnı́k, On spaces L p(x) and W k,p(x), Czechoslovak Math. J., 41 (116), No 4 (1991), 592-618.
[11] N.G. Meyers, A theory of capacities for potential of functions in Lebesgue classes, Math. Scand., 26 (1970), 255-292.
[12] Y. Mizuta, Potential theory in Euclidean Spaces, GAKUTO Internat. Ser. Math. Sci. Appl., 6 (1996).
[13] J. Nuutinen, P. Silvestre, The Riesz capacity in metric spaces, Preprint (2015), http://arxiv.org/abs/1501.05746.
[14] S.G. Samko, Convolution and potential type operators in the space Lp(x), Integral Transform. Spec. Funct., 7, No 3-4 (1998), 261-284.
[15] T. Sjödin, Polar sets and capacitary potentials in homogeneous spaces, Ann. Acad. Sci. Fenn. Math., 38 (2013), 771-783.
[16] W.P. Ziemer, Weakly Differentiable Functions, Springer-Verlag, New York (1989).