THE RIESZ CAPACITY IN
VARIABLE EXPONENT LEBESGUE SPACES

Abstract

In this paper, we study a capacity theory based on a definition of a Riesz potential in the Euclidean space. Also, we define the Riesz $\left( \alpha
,p(.)\right) $-capacity and discuss the properties of the capacity in the variable exponent Lebesgue space $L^{p(.)}(\mathbb{R}^{n})$.

Citation details of the article



Journal: International Journal of Applied Mathematics
Journal ISSN (Print): ISSN 1311-1728
Journal ISSN (Electronic): ISSN 1314-8060
Volume: 30
Issue: 2
Year: 2017

DOI: 10.12732/ijam.v30i2.7

Download Section



Download the full text of article from here.

You will need Adobe Acrobat reader. For more information and free download of the reader, please follow this link.

References

  1. [1] D.R. Adams, Sets and functions of finite Lp capacity, Indiana Univ. Math. J., 27 (1978), 611-627.
  2. [2] D.R. Adams, L.I. Hedberg, Function Spaces and Potential Theory, Springer-Verlag (1996).
  3. [3] H. Aikawa, M.R. Essen, Potential Theory: Selected Topics, No 1633, Springer (1996).
  4. [4] I. Aydın, Weighted variable Sobolev spaces and capacity, Journal of Function Spaces and Applications, 2012 (2012), Article ID 132690, 17 pages, doi:10.1155/2012/132690.
  5. [5] G. Choquet, Theory of capacities, Ann. Inst. Fourier, 5 (1954), 131-295.
  6. [6] L. Diening, P. Harjulehto, P. Hästö, M. Růžička, Lebesgue and Sobolev Spaces with Variable Exponents, Springer-Verlag, Berlin (2011).
  7. [7] S. Erdogan, Functional Analysis, Springer Netherlands (2003).
  8. [8] B. Fuglede, On the theory of potentials in locally compact spaces, Acta. Math., 103 (1960), 139-215.
  9. [9] S. Kakutani, Weak convergence in uniformly convex spaces, Tohoku Math. J. (2), 45 (1938), 188-193.
  10. [10] O. Kováčik, J. Rákosnı́k, On spaces L p(x) and W k,p(x), Czechoslovak Math. J., 41 (116), No 4 (1991), 592-618.
  11. [11] N.G. Meyers, A theory of capacities for potential of functions in Lebesgue classes, Math. Scand., 26 (1970), 255-292.
  12. [12] Y. Mizuta, Potential theory in Euclidean Spaces, GAKUTO Internat. Ser. Math. Sci. Appl., 6 (1996).
  13. [13] J. Nuutinen, P. Silvestre, The Riesz capacity in metric spaces, Preprint (2015), http://arxiv.org/abs/1501.05746.
  14. [14] S.G. Samko, Convolution and potential type operators in the space Lp(x), Integral Transform. Spec. Funct., 7, No 3-4 (1998), 261-284.
  15. [15] T. Sjödin, Polar sets and capacitary potentials in homogeneous spaces, Ann. Acad. Sci. Fenn. Math., 38 (2013), 771-783.
  16. [16] W.P. Ziemer, Weakly Differentiable Functions, Springer-Verlag, New York (1989).