In this paper we study some combinatorial properties of the ternary Thue-Morse word, t3. More precisely, we focus on squares of letters and the factors of t3 which separate them. We also establish that the number of return words of a given factor of t3 is 7, 8 or 9.
You will need Adobe Acrobat reader. For more information and free download of the reader, please follow this link.
References
[1] J.P. Allouche, J. Shallit, Automatique Sequences: Theory, Applications,
Generalizations, Cambridge University Press, Cambridge, 2003.
[2] Ľ. Balkovǎ, E. Pelantovǎ, W. Steiner, Return words in fixed points of
substitutions, Monatsh. Math., 155, No 3-4 (2008), 251-263.
[3] Ľ. Balkovǎ, Factor frequencies in generalized Thue-Morse words, Kyber-
netika, 48, No 3 (2012), 371-385.
[4] V. Berthé, M. Rigo, Eds, Combinatorics, Automata and Number Theory,
Ser. Encyclopedia of Mathematics and its Applications 135, Cambridge
University Press, 2010.
[5] P. Borwein, C. Ingalls, The Prouhet-Tarry-Escott problem revisited, En-
sign. Math., 40, No 994 (1994), 3-27.
[6] J. Cassaigne, I. Kaboré, Abelian complexity and frequencies of letters in
infinite words, Int. J. Found. Comput. Sci., 27 (2016), 631-649.
[7] J. Cassaigne, I. Kaboré, A word without uniforme frequency, Preprint.
[8] J. Cassaigne, G. Richomme, K. Saari, L.Q. Zamboni, Avoiding Abelian
powers in binary words with bounded Abelian Complexity, Int. J. Found.
Comput. Sci., 22, No 4 (2011), 905-920.
[9] F. Durand, A characterisation of substitutive sequences using return words,
Discrete Math., 179 (1998), 89-101.
[10] S. Ferenczi, Ch. Holton, L.Q. Zamboni, Structure of three interval ex-
change transformations, II. A combinatorial description of the trajectories,
J. Anal. Math., 89 (2003), 239-276.
[11] S. Ferenczi, C. Maudit, A. Nogueira, Substitution dynamical systems: al-
gebraic characterization of eigenvalues, Ann. Sci. Norm. Sup., 29 (1996),
519-533.
[12] A. Frid, On the frequency of factors in a DOL word, J. Autom. Lang.
Comb., 33, No 1 (1998), 29-41.
[13] J. Justin, L. Vuillon, Return words in Sturmian and episturmian words,
Theor. Inform. Appl., 34 (2000), 343-356.
[14] I. Kaboré, B. Kientéga, Abelian complexity of the Thue-Morse word over a
ternary alphabet, In: Combinatorics on Words (WORDS 2017), S. Brlek
et al. (Eds), Ser. LNCS, 10432 (2017), 132-143.
[15] M. Morse, D. A. Hedlund, Symbolic dynamics II. Sturmian trajectories,
Amer. J. Math., 62 (1940), 1-42.
[16] J. Peltomäki, Privileged factors in the Thue-Morse Word- A comparaison
of privileged words and Palindromes, Discrete Applied Mathematics, 193
(2015), 187-199.
[17] M. Peter, The asymptotic distribution of elements in automatic sequences,
Theoret. Comput. Sci., 301 (2003), 285-312.
[18] E. Prouhet, Mémoire sur quelques relations entre les puissances des nom-
bres, C. R. Acad. Sci. Paris, 33 (1851), 225.
[19] M. Quefflelec, Substitution dynamical systems- Spectral analysis, In: Lec-
ture Notes in Math., 1294, 1987.
[20] G. Richomme, K. Saari, L.Q. Zamboni, Abelian Complexity of Minimal
Subshifts. J. Lond. Math. Soc., 83, No 1 (2011), 79-94.
[21] K. Saari, On the frequency of letters in morphic sequences, LNCS, 3967
(2006), 334-345.
[22] A. Thue, Über unendliche Zeichenreihen, Norske Vid. Selsk. Skr. Mat. Nat.
Kl., 7 (1906), 1-22.
[23] A. Thue, Über die gegenseilige lage gleicher Teile gewisser Zeichenreihen,
Norske vid. selsk. Skr. Mat. Nat. Kl., 1 (1912), 139-158.
[24] L. Vuillon, A characterization of sturmian words by return words, Eur. J.
Comb., 22 (2001), 263-275.