SOME COMBINATORIAL PROPERTIES OF
THE TERNARY THUE-MORSE WORD

Abstract

In this paper we study some combinatorial properties of the ternary Thue-Morse word, t3. More precisely, we focus on squares of letters and the factors of t3 which separate them. We also establish that the number of return words of a given factor of t3 is 7, 8 or 9.

Citation details of the article



Journal: International Journal of Applied Mathematics
Journal ISSN (Print): ISSN 1311-1728
Journal ISSN (Electronic): ISSN 1314-8060
Volume: 31
Issue: 2
Year: 2018

DOI: 10.12732/ijam.v31i2.2

Download Section



Download the full text of article from here.

You will need Adobe Acrobat reader. For more information and free download of the reader, please follow this link.

References

  1. [1] J.P. Allouche, J. Shallit, Automatique Sequences: Theory, Applications, Generalizations, Cambridge University Press, Cambridge, 2003.
  2. [2] Ľ. Balkovǎ, E. Pelantovǎ, W. Steiner, Return words in fixed points of substitutions, Monatsh. Math., 155, No 3-4 (2008), 251-263.
  3. [3] Ľ. Balkovǎ, Factor frequencies in generalized Thue-Morse words, Kyber- netika, 48, No 3 (2012), 371-385.
  4. [4] V. Berthé, M. Rigo, Eds, Combinatorics, Automata and Number Theory, Ser. Encyclopedia of Mathematics and its Applications 135, Cambridge University Press, 2010.
  5. [5] P. Borwein, C. Ingalls, The Prouhet-Tarry-Escott problem revisited, En- sign. Math., 40, No 994 (1994), 3-27.
  6. [6] J. Cassaigne, I. Kaboré, Abelian complexity and frequencies of letters in infinite words, Int. J. Found. Comput. Sci., 27 (2016), 631-649.
  7. [7] J. Cassaigne, I. Kaboré, A word without uniforme frequency, Preprint.
  8. [8] J. Cassaigne, G. Richomme, K. Saari, L.Q. Zamboni, Avoiding Abelian powers in binary words with bounded Abelian Complexity, Int. J. Found. Comput. Sci., 22, No 4 (2011), 905-920.
  9. [9] F. Durand, A characterisation of substitutive sequences using return words, Discrete Math., 179 (1998), 89-101.
  10. [10] S. Ferenczi, Ch. Holton, L.Q. Zamboni, Structure of three interval ex- change transformations, II. A combinatorial description of the trajectories, J. Anal. Math., 89 (2003), 239-276.
  11. [11] S. Ferenczi, C. Maudit, A. Nogueira, Substitution dynamical systems: al- gebraic characterization of eigenvalues, Ann. Sci. Norm. Sup., 29 (1996), 519-533.
  12. [12] A. Frid, On the frequency of factors in a DOL word, J. Autom. Lang. Comb., 33, No 1 (1998), 29-41.
  13. [13] J. Justin, L. Vuillon, Return words in Sturmian and episturmian words, Theor. Inform. Appl., 34 (2000), 343-356.
  14. [14] I. Kaboré, B. Kientéga, Abelian complexity of the Thue-Morse word over a ternary alphabet, In: Combinatorics on Words (WORDS 2017), S. Brlek et al. (Eds), Ser. LNCS, 10432 (2017), 132-143.
  15. [15] M. Morse, D. A. Hedlund, Symbolic dynamics II. Sturmian trajectories, Amer. J. Math., 62 (1940), 1-42.
  16. [16] J. Peltomäki, Privileged factors in the Thue-Morse Word- A comparaison of privileged words and Palindromes, Discrete Applied Mathematics, 193 (2015), 187-199.
  17. [17] M. Peter, The asymptotic distribution of elements in automatic sequences, Theoret. Comput. Sci., 301 (2003), 285-312.
  18. [18] E. Prouhet, Mémoire sur quelques relations entre les puissances des nom- bres, C. R. Acad. Sci. Paris, 33 (1851), 225.
  19. [19] M. Quefflelec, Substitution dynamical systems- Spectral analysis, In: Lec- ture Notes in Math., 1294, 1987.
  20. [20] G. Richomme, K. Saari, L.Q. Zamboni, Abelian Complexity of Minimal Subshifts. J. Lond. Math. Soc., 83, No 1 (2011), 79-94.
  21. [21] K. Saari, On the frequency of letters in morphic sequences, LNCS, 3967 (2006), 334-345.
  22. [22] A. Thue, Über unendliche Zeichenreihen, Norske Vid. Selsk. Skr. Mat. Nat. Kl., 7 (1906), 1-22.
  23. [23] A. Thue, Über die gegenseilige lage gleicher Teile gewisser Zeichenreihen, Norske vid. selsk. Skr. Mat. Nat. Kl., 1 (1912), 139-158.
  24. [24] L. Vuillon, A characterization of sturmian words by return words, Eur. J. Comb., 22 (2001), 263-275.