ON THE BOUNDEDNESS OF DUNKL-TYPE FRACTIONAL
INTEGRAL OPERATOR IN THE GENERALIZED
DUNKL-TYPE MORREY SPACES

Abstract

First, we prove that the Dunkl-type maximal operator $M_{\alpha}$ is bounded on the generalized Dunkl-type Morrey spaces ${\cal M}_{p,\omega,\alpha}$ for $1<p<\infty$ and from the spaces ${\cal M}_{1,\omega,\alpha}$ to the weak spaces $W{\cal M}_{1,\omega,\alpha}$.

We prove that the Dunkl-type fractional order integral operator $I^{\beta,\alpha},$ $0<\beta <2\alpha+2$ is bounded from the generalized Dunkl-type Morrey spaces ${\cal M}_{p,\omega,\alpha}$ to ${\cal M}_{q,\omega^{p/q},\alpha}$, where ${\beta}/{(2\alpha+2)}=1/p-1/q$, $1<p<(2\alpha+2)/{\beta}$.

Citation details of the article



Journal: International Journal of Applied Mathematics
Journal ISSN (Print): ISSN 1311-1728
Journal ISSN (Electronic): ISSN 1314-8060
Volume: 31
Issue: 2
Year: 2018

DOI: 10.12732/ijam.v31i2.4

Download Section



Download the full text of article from here.

You will need Adobe Acrobat reader. For more information and free download of the reader, please follow this link.

References

  1. [1] C. Abdelkefi and M. Sifi, Dunkl translation and uncentered maximal operator on the real line, Intern. J. of Mathematics and Math. Sciences, 2007 (2007), Art. ID 87808, 9 pp.; doi:10.1155/2007/87808.
  2. [2] C. Abdelkefi and M. Sifi, On the uniform convergence of partial Dunkl integrals in Besov-Dunkl spaces, Fract. Calc. Appl. Anal., 9, No 1 (2006), 43-56.
  3. [3] C. Abdelkefi and M. Sifi, Characterization of Besov spaces for the Dunkl operator on the real line, J. of Inequalities in Pure and Appl. Math., 8, No 3 (2007), Art.# 73, 1-21.
  4. [4] D.R. Adams, A note on Riesz potentials, Duke Math. J., 42 (1975), 765-778.
  5. [5] R. Bouguila, M.N. Lazhari and M. Assal, Besov spaces associated with Dunkl’s operator, Integr. Transf. Spec. Funct., 18, No 8 (2007), 545-557.
  6. [6] V.I. Burenkov, V.S. Guliyev, Necessary and sufficient conditions for boundedness of the Riesz potential in the local Morrey-type spaces, Potential Analysis, 31, No 2 (2009), 1-39.
  7. [7] R.R. Coifman and G. Weiss, Analyse harmonique non commutative sur certains expaces homogenes, In: Lecture Notes in Math., 242, SpringerVerlag, Berlin, 1971.
  8. [8] F. Chiarenza, M. Frasca, Morrey spaces and Hardy–Littlewood maximal function, Rend. Math. 7 (1987), 273-279.
  9. [9] C.F. Dunkl, Differential-difference operators associated with reflections groups, Trans. Amer. Math. Soc., 311 (1989), 167-183.
  10. [10] V.S. Guliyev, Integral Operators on Function Spaces on the Homogeneous Groups and on Domains in Rn , Doctor’s Degree Dissertation, Moscow, Mat. Inst. Steklov, 1994, 1-329 (In Russian).
  11. [11] V.S. Guliyev, Function Spaces, Integral Operators and Two Weighted Inequalities on Homogeneous Groups. Some Applications, Baku, 1999, 1-332 (In Russian).
  12. [12] V.S. Guliyev, R.Ch. Mustafayev, Integral operators of potential type in spaces of homogeneous type, Doklady Ross. Akad. Nauk, 354, No 6 (1997), 730-732 (In Russian).
  13. [13] V.S. Guliyev, R.Ch. Mustafayev, Fractional integrals in spaces of functions defined on spaces of homogeneous type, Anal. Math., 24, No 3 (1998), 181200.
  14. [14] V.S. Guliyev, On maximal function and fractional integral, associated with the Bessel differential operator, Math. Inequalities and Appl., 6, No 2 (2003), 317-330.
  15. [15] V.S. Guliyev and J.J. Hasanov, Sobolev-Morrey type inequality for Riesz potentials, associated with the Laplace-Bessel differential operator, Fract. Calc. Appl. Anal., 9, No 1 (2006), 17-32.
  16. [16] V.S. Guliyev and J.J. Hasanov, Necessary and sufficient conditions for the boundedness of Riesz potential associated with the Laplace-Bessel differential operator in Morrey spaces, J. Math. Anal. Appl., 347 (2008), 113-122.
  17. [17] V.S. Guliyev, Y.Y. Mammadov, Function spaces and integral operators for the Dunkl operator on the real line, Khazar J. of Math., 2, No 4 (2006), 17-42.
  18. [18] V.S.Guliyev, Y.Y.Mammadov, On fractional maximal function and fractional integrals associated with the Dunkl operator on the real line, J. of Math. Anal. and Appl., 353, No 1 (2009), 449-459.
  19. [19] E.V. Guliyev, A. Eroglu, Y.Y. Mammadov, Necessary and sufficient conditions for the boundedness of dunkl-type fractional maximal operator in the Dunkl-type Morrey spaces, Abstract and Applied Anal., 2010 (2010), Art. ID 976493, 10 pp.; doi:10.1155/2010/976493.
  20. [20] D. Danielli, A Fefferman-Phong type inequality and applications to quasilinear subelliptic equatioins, Potential Analysis, 11 (1999), 387-413.
  21. [21] L. Kamoun, Besov-type spaces for the Dunkl operator on the real line, J. of Comput. and Appl. Math., 199 (2007), 56-67.
  22. [22] V.M. Kokilashvili, A. Kufner, Fractional integrals on spaces of homogeneous type, Comment. Math. Univ. Carolinae, 30, No 3 (1989), 511-523.
  23. [23] R.A. Macias, C. Segovia, A well behaved quasidistance for spaces of homogeneous type, Trab. Mat. Inst. Argent. Mat., 32 (1981), 18 pp.
  24. [24] Y.Y. Mammadov, On maximal operator associated with the Dunkl operator on R, Khazar J. of Mathematics, 2, No 4 (2006), 59-70.
  25. [25] Y.Y. Mammadov, On the boundedness of the maximal operator associated with the Dunkl operator on R on the Besov-Dunkl spaces, Proc. of NAS of Azerbaijan. Embedding Theorems. Harmonic Analysis, 26, No 34 (2007), Issue XIII, 244-257.
  26. [26] Y.Y. Mammadov, On the boundedness of Riesz potential in the Morrey spaces associated with Dunkl’s operator, Dokl. Nats. Akad. Nauk Azerb., LXVI, No 3 (2010), 13-19.
  27. [27] T. Mizuhara, Boundedness of some classical operators on generalized Morrey spaces, In: Harmonic Analysis, ICM 90 Satellite Proc. (Ed. S. Igari), Springer-Verlag, Tokyo (1991), 183-189.
  28. [28] C.B. Morrey, On the solutions of quasi-linear elliptic partial differential equations, Trans. Amer. Math. Soc. 43 (1938), 126-166.
  29. [29] B. Muckenhoupt and E.M. Stein, Classical expansions and their relation to conjugate harmonic functions, Trans. Amer. Math. Soc., 118 (1965), 17-92.
  30. [30] E. Nakai, Hardy–Littlewood maximal operator, singular integral operators and Riesz potentials on generalized Morrey spaces, Math. Nachr., 166 (1994), 95-103.
  31. [31] J. Peetre, On the theory of L p,λ spaces, J. Funct. Anal., 4 (1969), 71-87.
  32. [32] S.G. Samko, A.A. Kilbas and O.I. Marichev, Fractional Integrals and Derivative. Theory and Applications, Gordon and Breach Sci. Publishers, 1993.
  33. [33] M. Sifi, F. Soltani, Generalized Fock spaces and Weyl relations for the Dunkl kernel on the real line, J. Math. Anal. Appl., 270 (2002), 92-106.
  34. [34] F. Soltani, Lp -Fourier multipliers for the Dunkl operator on the real line, J. Funct. Anal., 209 (2004), 16-35.
  35. [35] F. Soltani, Littlewood-Paley operators associated with the Dunkl operator on R, J. Funct. Anal., 221 (2005), 205-225.
  36. [36] E.M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, Princeton, NJ, 1970.
  37. [37] M. Rösler, Bessel-type signed hypergroups on R, In: Probability Measures on Groups and Related Structures, XI, Oberwolfach, 1994 (Eds. H. Heyer and A. Mukherjea), World Scientific, River Edge, NJ, 1995, 292-304.
  38. [38] K. Trimeche, Paley-Wiener theorems for the Dunkl transform and Dunkl translation operators, Integr. Trans. Spec. Funct. 13 (2002), 17-38.
  39. [39] G.N. Watson, A Treatise on Theory of Bessel Functions, Cambridge University Press, Cambridge, 1966.