ON THE WEAK SOLUTIONS OF THE URYSOHN-STIELTJES
FUNCTIONAL INTEGRAL EQUATIONS

Abstract

The analysis of Urysohn-Stieltjes integral operators has been studied in [#!jb1!#]. Here we study the existence of weakly solution of functional integral equations of Urysohn-Stieltjes type and Hammerstien-Stieltjes type in the reflexive Banach space E. Also, we prove the existence of the weak maximal and weak minimal solutions.

Citation details of the article



Journal: International Journal of Applied Mathematics
Journal ISSN (Print): ISSN 1311-1728
Journal ISSN (Electronic): ISSN 1314-8060
Volume: 31
Issue: 2
Year: 2018

DOI: 10.12732/ijam.v31i8.8

Download Section



Download the full text of article from here.

You will need Adobe Acrobat reader. For more information and free download of the reader, please follow this link.

References

  1. [1] J. Banaś, Some properties of Urysohn-Stieltjes integral operators, Intern. J. Math. and Math. Sci., 21 (1998), 78-88.
  2. [2] J. Banaś and J. Dronka, Integral operators of Volterra-Stieltjes type, their properties and applications, Math. Comput. Modelling, 32, No 11-13 (2000), 1321-1331.
  3. [3] J. Banaś, J.C. Mena, Some properties of nonlinear Volterra-Stieltjes integral operators, Comput. Math. Appl., 49 (2005), 1565-1573.
  4. [4] J. Banaś, D. O’Regan, Volterra-Stieltjes integral operators, Math. Comput. Modelling, 41 (2005), 335-344.
  5. [5] J. Banaś, J.R. Rodriguez and K. Sadarangani, On a class of UrysohnStieltjes quadratic integral equations and their applications, J. Comput. Appl. Math., I13 (2000), 35-50.
  6. [6] J. Banaś and K. Sadarangani, Solvability of Volterra-Stieltjes operatorintegral equations and their applications, Comput. Math. Appl., 41, No 12 (2001), 1535-1544.
  7. [7] C.W. Bitzer, Stieltjes-Volterra integral equations, Illinois J. Math., 14 (1970), 434-451.
  8. [8] S. Chen, Q. Huang and L.H. Erbe, Bounded and zero-convergent solutions of a class of Stieltjes integro-differential equations, Proc. Amer. Math. Soc., 113 (1991), 999-1008.
  9. [9] J. Diestel, J.J. Uhl Jr., Vector Measures, Ser. Math. Surveys, Vol. 15, Amer. Math. Soc., Providence, RI (1977).
  10. [10] N. Dunford, J.T. Schwartz, Linear Operators, Interscience, Wiley, New York (1958).
  11. [11] A.M.A. EL-Sayed, W.G. El-Sayed, A.A.H. Abd El-Mowla, VolterraStieltjes integral equation in refexive Banach space, Electronic J. of Math. Anal. and Appl., 5, No 1 (2017), 287-293.
  12. [12] A.M.A. EL-Sayed, H.H.G. Hashem, Weak maximal and minimal solutions for Hammerstein and Urysohn integral equations in reflexive Banach spaces, Differential Equations and Control Processes, 4 (2008), 50-62.
  13. [13] R.F. Geitz, Pettis integration, Proc. Amer. Math. Soc., 82 (1981), 81-86.
  14. [14] E. Hille and R.S. Phillips, Functional Analysis and Semi-Groups, Amer. Math. Soc. Colloq. Publ. Providence, R.I. (1957).
  15. [15] J.S. Macnerney, Integral equations and semigroups, Illinois J. Math., 7 (1963), 148-173.
  16. [16] A.B. Mingarelli, Volterra-Stieltjes Integral Equations And Generalized Ordinary Differential Expressions, Lecture Notes in Math., Vol. 989, Springer (1983).
  17. [17] I.P. Natanson, Theory of Functions of a Real Variable, Ungar, New York (1960).
  18. [18] D. O’Regan, Fixed point theory for weakly sequentially continuous mapping, Math. Comput. Modeling, 27 (1998), 1-14.