EXACT SOLUTIONS OF BOUNDARY-VALUE PROBLEMS

Abstract

A survey of an approach for obtaining explicit formulae for solving local and nonlocal boundary value problems (BVPs) for some linear partial differential equations is presented. To this end an extension of the Heaviside-Mikusiński operational calculus is used. A multi-dimensional operational calculus is constructed for each of the considered problems. The main steps of construction of exact (closed) solutions using such operational calculi are outlined. It is based on a combination of the Fourier method and an extension of the Duhamel principle to the space variables. Program tools for numerical computation and visualization of the solutions using the computer algebra system Mathematica (http://www.wolfram.com/ mathematica) are developed.

Citation details of the article



Journal: International Journal of Applied Mathematics
Journal ISSN (Print): ISSN 1311-1728
Journal ISSN (Electronic): ISSN 1314-8060
Volume: 31
Issue: 3
Year: 2018

DOI: 10.12732/ijam.v31i3.1

Download Section



Download the full text of article from here.

You will need Adobe Acrobat reader. For more information and free download of the reader, please follow this link.

References

  1. [1] S. Beilin, Existence of solutions for one-dimensional wave equation with nonlocal conditions, Electronic J. of Differential Equations, 76 (2001), 1-8.
  2. [2] G.I. Chobanov, I.H. Dimovski, A two-variate operational calculus for boundary value problems, Fract. Calc. Appl. Anal., 2, No 5 (1999), 591-601.
  3. [3] I. Dimovski, Convolutional Calculus, Kluwer Academic Publishers, Dordrecht (1990).
  4. [4] I. Dimovski, Nonlocal boundary value problems, In: ``Mathematics and Educ. in Math.'' (Proc. of the 38th Spring Conf. of UBM), Sofia (2009), 31-40.
  5. [5] I. Dimovski, Nonclassical convolutions and their uses, Fract. Calc. Appl. Anal., 17, No 4 (2014), 936-944; DOI: 10.2478/s13540-014-0207-z.
  6. [6] I. Dimovski, M. Spiridonova, Numerical solution of boundary value problems for the heat and related equations. In: Computer Algebra and its Application to Physics, CAAP 2001 (Ed. V. P. Gerdt), Dubna (2001), 32-42.
  7. [7] I. Dimovski, M. Spiridonova, Computer implementation of solutions of boundary value problems for finite vibrating systems, Math. Balkanica (New Ser.), 18, Fasc. 3-4 (2004), 277-285.
  8. [8] I. Dimovski, M. Spiridonova, Computational approach to nonlocal boundary value problems by multivariate operational calculus, Math. Sci. Res. J., 9, No 12 (2005), 315-329.
  9. [9] I.H. Dimovski, M.N. Spiridonova, Construction of nonlocal linear vibration models using a computer algebra system, J. Programming and Computer Software, 37, No 2, 71-77, Pleiades Publ. Ltd. (2011); Original Russian Text publ. in: Programmirovanie, 37, No 2 (2011), 20-28; DOI: 10.1134/S0361768811020046.
  10. [10] I. Dimovski, M. Spiridonova, Operational calculus approach to nonlocal cauchy problems, J. Math. Comput. Sci., 4, No 2-3 (2010), 243-258.
  11. [11] I. Dimovski, M. Spiridonova, Operational calculi for nonlocal cauchy problems in resonance cases, Lecture Notes in Computer Science 8372, Springer, Berlin-Heidelberg (2014), ISSN 0302-9743, 83-95.
  12. [12] I. Dimovski, M. Spiridonova, operational calculus approach to explicit solving of initial and boundary value problems, J. Phys. of Particles and Nuclei Letters, Dubna, 12, No 3 (194) (2015), 619-623.
  13. [13] I.H. Dimovski, Y.T. Tsankov, Exact solutions of nonlocal BVPs for the multidimensional heat equations, Math. Balkanica (New Ser.), 26, Fasc. 1-2 (2012), 89-102.
  14. [14] J.-M.-C. Duhamel, Memoire sur le M´ethode generale relative au mouvement de la chaleur dans les corps solides plong´es dans les mileaux dont la temperature varie avec le temps, J. de l’Ec. Polyt.. 14 (1830), 20-77.
  15. [15] S.J. Farlow, Patial Differential Equations for Scientists and Engineers, Wiley, N. York (1982).
  16. [16] N.I. Ionkin, Numerical solution of nonclassical boundary value problems for the heat equation, Differential Equations, 13, No 2 (1977), 294-304 (in Russian).
  17. [17] R. Larsen, An Introduction to the Theory of Multipliers, Springer-Verlag, Berlin-Heidelberg-New York (1972).
  18. [18] J. Mikusi´nski, Operational Calculus, Oxford-Warszawa (1959).
  19. [19] M. Spiridonova, Operational methods in the environment of a computer algebra system, Serdica J. of Computing, 3 (2009), 381-424.
  20. [20] D.V. Widder, The Heat Equation, Academic Press, New York (1975).