(2n-1)-POINT NONLINEAR TERNARY
INTERPOLATING SUBDIVISION SCHEMES

Abstract

Nonlinear interpolating subdivision schemes have been introduced in recent years to reduce Gibbs phenomenon near irregular initial data points. In this article, we presented a class of (2n-1)-point nonlinear ternary interpolating subdivision schemes. It is shown that several of the existing nonlinear ternary interpolating subdivision schemes become special cases for our proposed class of schemes. Convergence for one special case of 5-point nonlinear interpolating subdivision schemes is proved.

Citation details of the article



Journal: International Journal of Applied Mathematics
Journal ISSN (Print): ISSN 1311-1728
Journal ISSN (Electronic): ISSN 1314-8060
Volume: 31
Issue: 3
Year: 2018

DOI: 10.12732/ijam.v31i3.9

Download Section



Download the full text of article from here.

You will need Adobe Acrobat reader. For more information and free download of the reader, please follow this link.

References

  1. [1] S. Amat, K. Dadourian and J. Liandrat, On a nonlinear subdivision scheme avoiding gibbs oscillations and converging towards Cs functions with s > 1, Mathematics of Computation, 80, No 274 (2011), 959-971.
  2. [2] S. Amat, K. Dadourian and J. Liandrat, On a nonlinear 4-point ternary and interpolatory multiresolution scheme elimenating the Gibbs phenomenon, International J. of Numerical Analysis and Modeling, 7, No 2 (2010), 261-280.
  3. [3] F. Arandiga, R. Donat, M. Santagueda, The PCHIP subdivision scheme, Applied Mathematics and Computation, 272, No 1 (2016), 28-40.
  4. [4] M. Aslam, C1 continuity of 3-point nonlinear ternary interpolating subdivision schemes, Internatonal J. of Numerical Methods and Applications, 14, No 2 (2015), 119-132; http://dx.doi.org/10.17654/IJNMADec2015 119 132.
  5. [5] M. Aslam, A family of 5-point nonlinear ternary interpolating subdivision schemes with c2 smoothness, Mathematical and Computational Applications, 23, No 2 (2018), 18; doi:10.3390/mca23020018.
  6. [6] M. Aslam and W. Abeysinghe, Odd-Ary approximating subdivision schemes and rs strategy for irregular dense initial data, ISRN Mathematical Analysis (2012); DOI:10.5402/2012/745096.
  7. [7] M. Aslam, G. Mustafa and A. Ghaffar, (2n − 1)-point ternary approximating and interpolating subdivision schemes, J. of Applied Mathematics (2011); doi:10.1155/2011/832630.
  8. [8] N. Aspert, Non-linear subdivision of univariate signals and discrete surfaces, EPFL Thesis (2003).
  9. [9] A. Cohen, N. Dyn and B. Matei, Quasilinear subdivision schemes with applications to ENO interpolation, Applied and Computational Harmonic Analysis, 15, No 2 (2003), 89-116.
  10. [10] S. Harizanov, Stability of nonlinear subdivision schemes and multiresolutions, Master’s Thesis, Jacobs University, Bremen (2007).
  11. [11] H. Zheng, M. Hu, G. Peng, Constructing (2n-1)-point ternary interpolatory subdivision schemes by using variation of constants, IEEE Proc. of the Intern. Conf. on Computational Intelligence and Software Engineering (2009), 1-4.