NEW BOUNDARY CONDITION FOR THE TWO
DIMENSIONAL STATIONARY BOUSSINESQ
PARADIGM EQUATION

Abstract

The paper considers stationary propagating wave solutions to a two dimensional Boussinesq equation. It is nonlinear, fourth order, elliptic equation. A new boundary condition (BC) on the computational boundary is proposed and applied. The numerical algorithm for computation of stationary propagating waves is based on high order accurate finite difference schemes. The performed numerical tests confirm the validity of the new BC. A comparison with the known in the literature formulas is also given.

Citation details of the article



Journal: International Journal of Applied Mathematics
Journal ISSN (Print): ISSN 1311-1728
Journal ISSN (Electronic): ISSN 1314-8060
Volume: 32
Issue: 1
Year: 2019

DOI: 10.12732/ijam.v32i1.13

Download Section



Download the full text of article from here.

You will need Adobe Acrobat reader. For more information and free download of the reader, please follow this link.

References

  1. [1] C.I. Christov, An energy-consistent dispersive shallow-water model, Wave Motion, 34 (2001), 161-174.
  2. [2] J. Boussinesq, Theorie de lintumescence liquide, applelee onde solitaire ou de translation, se propageant dans un canal rectangulaire, Comptes Rendus de lAcademie des Sciences 72 (1871), 755-759.
  3. [3] J. Boussinesq, Theorie des ondes et des remous qui se propagent le long dun canal rectangulaire horizontal, en communiquant au liquide contenu dans ce canal des vitesses sensiblement pareilles de la surface au fond, Journal de Mathematiques Pures et Aplliquees, Deuxieme Serie, 17 (1872), 55-108.
  4. [4] I. Christov, C.I. Christov, Physical dynamics of quasi-particles in nonlinear wave equations, Physics Letters A, 372, Issue 4 (2008), 841-848.
  5. [5] J.K. Perring, T.H.R. Skyrme, A model unified field equation, Nuclear Physics, 31 (1962), 550-555.
  6. [6] C.I. Christov, Numerical implementation of the asymptotic boundary conditions for steadily propagating 2D solitons of Boussinesq type equations, Mathematics and Computers in Simulation, 82 (2012), 1079-1092.
  7. [7] M. Christou, C.I. Christov, Fourier Galerkin method for 2D solitons of Boussinesq equation, Mathematics and Computers in Simulation 74 (2007), 82-92.
  8. [8] M. Christou, C.I. Christov, Galerkin spectral method for the 2D solitary waves of Boussinesq paradigm equation, In: Applications of Mathematics in Technical and Natural Sciences, Sozopol (Bulgaria), AIP Conference Proceedings, 1186, Issue 1 (2009), 217-225.
  9. [9] C.I. Christov, J. Choudhury, Perturbation solution for the 2D Boussinesq equation, Mech. Res. Commun., 38 (2011), 274-281.
  10. [10] B. Engquist and A. Majda, Absorbing boundary conditions for the numerical simulation of waves, Math. Comp., 31 (1977), 629651.
  11. [11] C.I. Goldstein, A finite element method for solving Helmholtz type equations in waveguides and other unbounded domains, Math. Comp., 39 (1982), 309324.
  12. [12] H. Han, W. Bao, Error estimates for the finite element approximation of problems in unbounded domains, SIAM J. Numer. Anal. 37, No 4 (2000), 11011119; DOI: 10.1137/S0036142998341805.
  13. [13] N. Kolkovska, Two families of finite difference schemes for multidimensional Boussinesq paradigm equation, In: Applications of Mathematics in Technical and Natural Sciences, Sozopol (Bulgaria), AIP Conference Proceedings, 1301 (2010), 395.
  14. [14] N. Kolkovska, K. Angelow, Numerical computation of the critical energy constant for two-dimensional Boussinesq equations, In: Applications of Mathematics in Technical and Natural Sciences: 7th International Conference for Promoting the Application of Mathematics in Technical and Natural Scienses, Albena (Bulgaria), AIP Conference Proceedings, 1684 (2015), # 080007; https://doi.org/10.1063/1.4934318.
  15. [15] P. Northrop, P.A. Ramachandran, W. Schiesser, V.R. Subramanian, A robust false transient method of lines for elliptic partial differential equations, Chemical Engineering Science 90 (2013), 3239.