In this paper, we propose an alternative smoothness measure formulation using power of ratio
for TENO schemes. The spectral properties of the alternative scheme suggest comparable dissipation and dispersion with the original five-point TENO schemes. The advantage of this alternative scheme is a more distinct scale separation at a high wavenumber. Our numerical experiments reveal that the resolution in one-dimensional problems is quite similar to the original five-point TENO scheme. Despite this, the resolution in two-dimensional problems gives an alternative fine-scale structure.
You will need Adobe Acrobat reader. For more information and free download of the reader, please follow this link.
References
[1] G.-S. Jiang, C.-W. Shu, Efficient implementation of weighted ENO
schemes, J. of Comput. Physics, 126, No 1 (1996), 202-228; doi:
10.1006/jcph.1996.0130.
[2] A. Harten, B. Engquist, S. Osher, S.R. Chakravarthy, Uniformly high order
accurate essentially non-oscillatory schemes, III, J. of Comput. Physics, 71,
No 2 (1987), 231-303; doi: 10.1016/0021-9991(87)90031-3.
[3] X.-D. Liu, S. Osher, T. Chan, Weighted essentially non-oscillatory
schemes, J. of Comput. Physics, 115, No 1 (1994), 200-212; doi:
10.1006/jcph.1994.1187.
[4] A.K. Henrick, T.D. Aslam, J.M. Powers, Mapped weighted essentially non-oscillatory schemes: Achieving optimal order near critical points, J. of Comput. Physics, 207, No 2 (2005), 542-567; doi:
10.1016/j.jcp.2005.01.023.
[5] R. Borges, M. Carmona, B. Costa, W.S. Don, An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws, J. of Comput.
Physics, 227, No 6 (2008), 3191-3211; doi: 10.1016/j.jcp.2007.11.038.
[6] Y. Ha, C.H. Kim, Y.J. Lee, J. Yoon, An improved weighted essentially nonoscillatory scheme with a new smoothness indicator, J. of Comput. Physics,
232, No 1 (2013), 68-86; doi: https://doi.org/10.1016/j.jcp.2012.06.016.
[7] Z. Zhao, J. Zhu, Y. Chen, J. Qiu, A new hybrid WENO scheme for hyperbolic conservation laws, Computers & Fluids, 179 (2019), 422-436; doi:
10.1016/j.compfluid.2018.10.024.
[8] J. Peng, C. Zhai, G. Ni, H. Yong, Y. Shen, An adaptive characteristic-wise
reconstruction WENO-Z scheme for gas dynamic Euler equations, Computers
& Fluids, 179 (2019), 34-51; doi: 10.1016/j.compfluid.2018.08.008.
[9] R. Kumar. P. Chandrashekar, Efficient seventh order WENO schemes of
adaptive order for hyperbolic conservation laws, Computers & Fluids, 190
(2019), 49-76; doi: 10.1016/j.compfluid.2019.06.003.
[10] J. Shi, C. Hu, C.-W. Shu, A Technique of Treating Negative Weights in
WENO Schemes, J. of Comput. Physics, 175, No 1 (2002), 108-127; doi:
10.1006/jcph.2001.6892.
[11] X. Zhang, C.-W. Shu, Positivity-preserving high order finite difference
WENO schemes for compressible Euler equations, J. of Comput. Physics,
231, No 5 (2012), 2245-2258; doi: 10.1016/j.jcp.2011.11.020.
[12] X. Cai, X. Zhang, J. Qiu, Positivity-preserving high order finite volume
hweno schemes for compressible Euler equations, J. of Scient. Computing,
68, No 2 (2016), 464-483; doi: 10.1007/s10915-015-0147-8.
[13] X. Hu, Q. Wang, N. Adams, An adaptive central-upwind weighted essentially non-oscillatory scheme, J. of Comput. Physics, 229, No 23 (2010),
8952-8965; doi: 10.1016/j.jcp.2010.08.019.
[14] X. Hu, N. Adams, Scale separation for implicit large eddy simulation, J. of Comput. Physics, 230, No 19 (2011), 7240-7249; doi:
10.1016/j.jcp.2011.05.023.
[15] X.Y. Hu, V.K. Tritschler, S. Pirozzoli, N.A. Adams, Dispersion-dissipation
condition for finite difference schemes, arXiv: 1204.5088 (2012).
[16] L. Fu, X.Y. Hu, N.A. Adams, A family of high-order targeted ENO schemes
for compressible-fluid simulations, J. of Comput. Physics, 305, (2016), 333-
359; doi: 10.1016/j.jcp.2015.10.037.
[17] F. Jia, Z. Gao, W.S. Don, A Spectral study on the dissipation and dispersion of the WENO schemes, J. of Scient. Computing, 63, No 1 (2015),
49-77; doi: 10.1007/s10915-014-9886-1.
[18] M. Castro, B. Costa, W.S. Don, High order weighted essentially nonoscillatory WENO-Z schemes for hyperbolic conservation laws, J. of Comput.
Physics, 230, No 5 (2011), 1766-1792; doi: 10.1016/j.jcp.2010.11.028.
[19] L. Fu, X.Y. Hu, N.A. Adams, Targeted ENO schemes with tailored resolution property for hyperbolic conservation laws, J. of Comput. Physics,
349, (2017), 97-121; doi: 10.1016/j.jcp.2017.07.054.
[20] W.-S. Don, R. Borges, Accuracy of the weighted essentially non-oscillatory
conservative finite difference schemes, J. of Comput. Physics, 250 (2013),
347-372; doi: 10.1016/j.jcp.2013.05.018.
[21] S. Pirozzoli, On the spectral properties of shock-capturing
schemes, J. of Comput. Physics, 219, No 2 (2006), 489-497; doi:
10.1016/j.jcp.2006.07.009.
[22] V. Titarev, E. Toro, Finite-volume WENO schemes for three-dimensional
conservation laws, J. of Comput. Physics, 201, No 1 (2004), 238-260; doi:
10.1016/j.jcp.2004.05.015.
[23] E.F. Toro, The HLLC Riemann solver, Shock Waves, 29, No 8 (2019),
1065-1082; doi: 10.1007/s00193-019-00912-4.
[24] C.-W. Shu, S. Osher, Efficient implementation of essentially non-oscillatory
shock-capturing schemes, J. of Comput. Physics, 77, No 2 (1988), 439-471;
doi: 10.1016/0021-9991(88)90177-5.
[25] P.D. Lax, X.-D. Liu, Solution of two-dimensional riemann problems of gas
dynamics by positive schemes, SIAM J. on Scient. Computing, 19, No 2
(1998), 319-340; doi: 10.1137/S1064827595291819.
[26] P. Woodward, P. Colella, The numerical simulation of two-dimensional
fluid flow with strong shocks, J. of Comput. Physics, 54, No 1 (1984),
115-173; doi: 10.1016/0021-9991(84)90142-6.
[27] L. Fu, A low-dissipation finite-volume method based on a new TENO
shock-capturing scheme, Computer Phys. Communications, 235, (2019),
25-39; doi: 10.1016/j.cpc.2018.10.009.