AN ALTERNATIVE SMOOTHNESS MEASURE
FORMULATION OF TARGETED ENO SCHEMES
FOR COMPRESSIBLE FLOW SIMULATION

Abstract

In this paper, we propose an alternative smoothness measure formulation using power $p=2$ of ratio $\tfrac{{{\tau }_{K}}}{{{\beta }_{k,r}}}$ for TENO schemes. The spectral properties of the alternative scheme suggest comparable dissipation and dispersion with the original five-point TENO schemes. The advantage of this alternative scheme is a more distinct scale separation at a high wavenumber. Our numerical experiments reveal that the resolution in one-dimensional problems is quite similar to the original five-point TENO scheme. Despite this, the resolution in two-dimensional problems gives an alternative fine-scale structure.

Citation details of the article



Journal: International Journal of Applied Mathematics
Journal ISSN (Print): ISSN 1311-1728
Journal ISSN (Electronic): ISSN 1314-8060
Volume: 34
Issue: 3
Year: 2021

DOI: 10.12732/ijam.v34i3.10

Download Section



Download the full text of article from here.

You will need Adobe Acrobat reader. For more information and free download of the reader, please follow this link.

References

  1. [1] G.-S. Jiang, C.-W. Shu, Efficient implementation of weighted ENO schemes, J. of Comput. Physics, 126, No 1 (1996), 202-228; doi: 10.1006/jcph.1996.0130.
  2. [2] A. Harten, B. Engquist, S. Osher, S.R. Chakravarthy, Uniformly high order accurate essentially non-oscillatory schemes, III, J. of Comput. Physics, 71, No 2 (1987), 231-303; doi: 10.1016/0021-9991(87)90031-3.
  3. [3] X.-D. Liu, S. Osher, T. Chan, Weighted essentially non-oscillatory schemes, J. of Comput. Physics, 115, No 1 (1994), 200-212; doi: 10.1006/jcph.1994.1187.
  4. [4] A.K. Henrick, T.D. Aslam, J.M. Powers, Mapped weighted essentially non-oscillatory schemes: Achieving optimal order near critical points, J. of Comput. Physics, 207, No 2 (2005), 542-567; doi: 10.1016/j.jcp.2005.01.023.
  5. [5] R. Borges, M. Carmona, B. Costa, W.S. Don, An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws, J. of Comput. Physics, 227, No 6 (2008), 3191-3211; doi: 10.1016/j.jcp.2007.11.038.
  6. [6] Y. Ha, C.H. Kim, Y.J. Lee, J. Yoon, An improved weighted essentially nonoscillatory scheme with a new smoothness indicator, J. of Comput. Physics, 232, No 1 (2013), 68-86; doi: https://doi.org/10.1016/j.jcp.2012.06.016.
  7. [7] Z. Zhao, J. Zhu, Y. Chen, J. Qiu, A new hybrid WENO scheme for hyperbolic conservation laws, Computers & Fluids, 179 (2019), 422-436; doi: 10.1016/j.compfluid.2018.10.024.
  8. [8] J. Peng, C. Zhai, G. Ni, H. Yong, Y. Shen, An adaptive characteristic-wise reconstruction WENO-Z scheme for gas dynamic Euler equations, Computers & Fluids, 179 (2019), 34-51; doi: 10.1016/j.compfluid.2018.08.008.
  9. [9] R. Kumar. P. Chandrashekar, Efficient seventh order WENO schemes of adaptive order for hyperbolic conservation laws, Computers & Fluids, 190 (2019), 49-76; doi: 10.1016/j.compfluid.2019.06.003.
  10. [10] J. Shi, C. Hu, C.-W. Shu, A Technique of Treating Negative Weights in WENO Schemes, J. of Comput. Physics, 175, No 1 (2002), 108-127; doi: 10.1006/jcph.2001.6892.
  11. [11] X. Zhang, C.-W. Shu, Positivity-preserving high order finite difference WENO schemes for compressible Euler equations, J. of Comput. Physics, 231, No 5 (2012), 2245-2258; doi: 10.1016/j.jcp.2011.11.020.
  12. [12] X. Cai, X. Zhang, J. Qiu, Positivity-preserving high order finite volume hweno schemes for compressible Euler equations, J. of Scient. Computing, 68, No 2 (2016), 464-483; doi: 10.1007/s10915-015-0147-8.
  13. [13] X. Hu, Q. Wang, N. Adams, An adaptive central-upwind weighted essentially non-oscillatory scheme, J. of Comput. Physics, 229, No 23 (2010), 8952-8965; doi: 10.1016/j.jcp.2010.08.019.
  14. [14] X. Hu, N. Adams, Scale separation for implicit large eddy simulation, J. of Comput. Physics, 230, No 19 (2011), 7240-7249; doi: 10.1016/j.jcp.2011.05.023.
  15. [15] X.Y. Hu, V.K. Tritschler, S. Pirozzoli, N.A. Adams, Dispersion-dissipation condition for finite difference schemes, arXiv: 1204.5088 (2012).
  16. [16] L. Fu, X.Y. Hu, N.A. Adams, A family of high-order targeted ENO schemes for compressible-fluid simulations, J. of Comput. Physics, 305, (2016), 333- 359; doi: 10.1016/j.jcp.2015.10.037.
  17. [17] F. Jia, Z. Gao, W.S. Don, A Spectral study on the dissipation and dispersion of the WENO schemes, J. of Scient. Computing, 63, No 1 (2015), 49-77; doi: 10.1007/s10915-014-9886-1.
  18. [18] M. Castro, B. Costa, W.S. Don, High order weighted essentially nonoscillatory WENO-Z schemes for hyperbolic conservation laws, J. of Comput. Physics, 230, No 5 (2011), 1766-1792; doi: 10.1016/j.jcp.2010.11.028.
  19. [19] L. Fu, X.Y. Hu, N.A. Adams, Targeted ENO schemes with tailored resolution property for hyperbolic conservation laws, J. of Comput. Physics, 349, (2017), 97-121; doi: 10.1016/j.jcp.2017.07.054.
  20. [20] W.-S. Don, R. Borges, Accuracy of the weighted essentially non-oscillatory conservative finite difference schemes, J. of Comput. Physics, 250 (2013), 347-372; doi: 10.1016/j.jcp.2013.05.018.
  21. [21] S. Pirozzoli, On the spectral properties of shock-capturing schemes, J. of Comput. Physics, 219, No 2 (2006), 489-497; doi: 10.1016/j.jcp.2006.07.009.
  22. [22] V. Titarev, E. Toro, Finite-volume WENO schemes for three-dimensional conservation laws, J. of Comput. Physics, 201, No 1 (2004), 238-260; doi: 10.1016/j.jcp.2004.05.015.
  23. [23] E.F. Toro, The HLLC Riemann solver, Shock Waves, 29, No 8 (2019), 1065-1082; doi: 10.1007/s00193-019-00912-4.
  24. [24] C.-W. Shu, S. Osher, Efficient implementation of essentially non-oscillatory shock-capturing schemes, J. of Comput. Physics, 77, No 2 (1988), 439-471; doi: 10.1016/0021-9991(88)90177-5.
  25. [25] P.D. Lax, X.-D. Liu, Solution of two-dimensional riemann problems of gas dynamics by positive schemes, SIAM J. on Scient. Computing, 19, No 2 (1998), 319-340; doi: 10.1137/S1064827595291819.
  26. [26] P. Woodward, P. Colella, The numerical simulation of two-dimensional fluid flow with strong shocks, J. of Comput. Physics, 54, No 1 (1984), 115-173; doi: 10.1016/0021-9991(84)90142-6.
  27. [27] L. Fu, A low-dissipation finite-volume method based on a new TENO shock-capturing scheme, Computer Phys. Communications, 235, (2019), 25-39; doi: 10.1016/j.cpc.2018.10.009.