You will need Adobe Acrobat reader. For more information and free download of the reader, please follow this link.
References
[1] M.V. Keldysh, On some cases of degeneration of an equation of elliptic
type on the domain boundary, Dokl. Akad. Nauk SSSR, 77, No 2 (1951),
181-183.
[2] G. Fichera, On a unified theory of boundary value problems for ellipticparabolic equations of second order, Matematika, 7, No 6 (1963), 99-122.
[3] O.A. Oleynik, J.V. Radkevitch, Second order quations with nonnegative
characteristic form, VINITI, Ser. Itogi Nauki, Math. Analysis (1971), 7-
252.
[4] M. Franciosi, Sul de un equazioni elliptico-parabolica a coefficienti discontinue, Boll. Un. Math. Ital., 6, No 2 (1983), 63-75.
[5] M. Franciosi, Un theoreme di esistenza ed unicita per la soluzione di
un’equazione elliptico-parabolica, a coefficienti-discontinui, in forma non
divergenza, Bull. Un. Mat. Ital., 6, No 4-B (1985), 253-263.
[6] A. Alvino, G.Trombetti, Second order elliptic equation whose coefficients
have their first derivatives weakly-Ln, Annali di Matematica Pura ed Applicata
, 138 (1984), 331-340.
[7] T.S. Gadjiev, E. Gasimova, On smoothness of solution of the first
boundary-value problem for second order degenerate elliptic-parabolic
equations, Ukranian Mathematical Journal, 60, No 6 (2008), 723-736.
[8] S. Chanillo, R.L. Wheeden, Existence and estimates of Green’s function
for degenerate elliptic equations, Annali della Scuola Normale Superiore
di Pisa-Classe di Scienze, 15, No 2 (1988), 309-340.
[9] P.A. Domenico, F.W. Schwartz, Physical and Chemical Hydrogeology, John
Wiley and Sons, New York (1998).
[10] W.Merza, P. Rybka, Strong solutions to the Richards equation in the unsaturated zone, Journal of Mathematical Analysis and Applications, 371,
No 2 (2010), 741-749.
[11] T.S. Gadjiev, A.V. Mammadova, Regularity of solutions of classes nonlinear elliptic-parabolic problems, Spectral Theory and its Applications, Baku
(2019), 68-70.
[12] T.S. Gadjiev, M.N. Kerimova, G. Gasanova, The solvability of boundary
value problem for degenerate equations, Ukranian Mathematical Journal
4 (2020), to appear.
[13] T.S. Gadjiev, S.Y. Aliev, M.N. Kerimova, The strong solvability boundary
value problem for linear non-divergent degenerate equations of ellipticparabolic type, Proceedings of IAM, 8, No 1 (2019), 14-23.