MATHEMATICAL MODELING AND OPTIMAL CONTROL
OF EBOLA VIRUS TRANSMISSION DYNAMICS

Abstract

This paper investigates a dynamic model for assessing the population-level impact of isolation of infectious individuals during the 2015-outbreak of Ebola virus in Liberia. The model includes demographic effects, latent undetectable and latent detectable individuals. The paper presents different optimal control strategies associated with isolating infectious symptomatic individuals in order to control the propagation of the virus.

Citation details of the article



Journal: International Journal of Applied Mathematics
Journal ISSN (Print): ISSN 1311-1728
Journal ISSN (Electronic): ISSN 1314-8060
Volume: 34
Issue: 3
Year: 2021

DOI: 10.12732/ijam.v34i3.9

Download Section



Download the full text of article from here.

You will need Adobe Acrobat reader. For more information and free download of the reader, please follow this link.

References

  1. [1] S. Shrivastava, P. Shrivastava, World Health Organization releases the list of blueprint priority diseases, Journal of the Scientific Society, 45 (2018), 49-49.
  2. [2] M. Barry, F.A. Traor´e, F.B. Sako, D.O. Kpamy, E.I. Bah, M.Poncin, S. Keita, M. Cisse, A. Tour´e, Ebola outbreak in Conakry, Guinea: epidemiological, clinical, and outcome features, Medecine et maladies infectieuses, 44 (2014), 491-494.
  3. [3] E.K. Chapnick, Ebola Myths and Facts for Dummies, John Wiley & Sons (2014).
  4. [4] A.J. Lewnard, M.L.N. Mbah, J.A. Alfaro-Murillo, L.F. Altice, L. Bawo, G.T. Nyenswah, P.A. Galvani, Dynamics and control of Ebola virus transmission in Montserrado, Liberia: a mathematical modelling analysis, The Lancet Infectious Diseases, 14 (2014), 1189-1195.
  5. [5] C.T. Smith, H. Babcock, Ebola and Marburg Viruses, Infobase Publishing (2010).
  6. [6] L. Borio, T. Inglesby, C.J. Peters, A.L. Schmaljohn, J.M. Hughes, P.B. Jahrling, T. Ksiazek, K.M. Johnson, A. Meyerhoff, T. O’Toole, Hemorrhagic fever viruses as biological weapons: medical and public health management, Jama, 287 (2002), 2391-2405.
  7. [7] S.F. Dowell, R. Mukunu, T.G. Ksiazek, A.S. Khan, P. E. Rollin, E. Pierre, C.J. Peters, Transmission of Ebola hemorrhagic fever: a study of risk factors in family members, Kikwit, Democratic Republic of the Congo, 1995, The Journal of Infectious Diseases, 179 (1999), 87-91.
  8. [8] C.T. Smith, Ebola, Infobase Publishing (2009).
  9. [9] J. Alton, The Ebola Survival Handbook: An MD Tells You What You Need to Know Now to Stay Safe, Simon and Schuster (2014).
  10. [10] J. Legrand, R.F. Grais, P.Y. Boelle, A.J. Valleron, A. Flahault, Understanding the dynamics of Ebola epidemics, Epidemiology & Infection, 135 (2007), 610-621.
  11. [11] S.I. Okware, F.G. Omaswa, S. Zaramba,A. Opio, J.J. Lutwama, J. Kamugisha, E.B. Rwaguma, P. Kagwa, M. Lamunu, An outbreak of Ebola in Uganda, Tropical Medicine & International Health, 7 (2002), 1068-1075.
  12. [12] K. Bibby, L.W. Casson, E. Stachler, C.N. Haas, Ebola virus persistence in the environment: state of the knowledge and research needs, Environmental Science & Technology Letters, 2 (2015), 2-6.
  13. [13] A. Rachah, D.F.M. Torres, Mathematical modelling, simulation, and optimal control of the 2014 Ebola outbreak in West Africa, Discrete Dynamics in Nature and Society, 2015 (2015).
  14. [14] A. Rachah, D.F.M. Torres, Optimal control strategies for the spread of Ebola inWest Africa, Journal of Mathematical Analysis, 7 (2016), 102–114.
  15. [15] S. Gao, Z. Teng, J.J. Nieto, A. Torres, Analysis of an SIR epidemic model with pulse vaccination and distributed time delay, BioMed Research International, 2007 (2007).
  16. [16] C.M. James-Berry, Vaccine control of avian influenza H5N1 in poultry: need for a positive marker, Journal of Vaccines & Vaccination, 4 (2013), 168-178.
  17. [17] E. Jung, S. Iwami, Y. Takeuchi, T. Jo, Optimal control strategy for prevention of avian influenza pandemic, Journal of theoretical biology, 260 (2009), 220-229.
  18. [18] J.M. Tchuenche, S.A. Khamis, F.B. Agusto, S.C. Mpeshe, Optimal control and sensitivity analysis of an influenza model with treatment and vaccination, Acta Biotheoretica, 59 (2011), 1–28.
  19. [19] A. Rachah, D.F.M. Torres, Predicting and controlling the Ebola infection, Mathematical Methods in the Applied Sciences, 40 (2017), 6155-6164.
  20. [20] O. Diekmann, H. Heesterbeek, T. Britton, Mathematical Tools for Understanding Infectious Disease Dynamics, Princeton University Press, Oxford (2012).
  21. [21] M. Kretzschmar, S. Van den Hof, J. Wallinga, J. Van Wijngaarden, Ring vaccination and smallpox control, Emerging Infectious Diseases, 10 (2004), 832-841.
  22. [22] J. Longini, M. Ira E. Ackerman, L.R. Elveback, An optimization model for influenza A epidemics, Mathematical Biosciences, 38 (1978), 141-157.
  23. [23] H.S. Rodrigues, M.T. Monteiro, D.F.M. Torres, Dynamics of dengue epidemics when using optimal control, Mathematical and Computer Modelling, 52 (2010), 1667-1673.
  24. [24] H.S. Rodrigues, M.T. Monteiro, D.F.M. Torres, Vaccination models and optimal control strategies to dengue, Mathematical Biosciences, 247 (2014), 1-12.
  25. [25] M. Eichner, S.F. Dowell, N. Firese, Incubation period of Ebola hemorrhagic virus subtype Zaire, Osong Public Health and Research Perspectives, 2 (2011), 3-7.
  26. [26] E.M. Leroy, S. Baize, V.E. Volchkov, S.P. Fisher-Hoch, M.C. GeorgesCourbot, J. Lansoud-Soukate, M. Capron, P. Debre, A.J. Georges, J.B. McCormick, Human asymptomatic Ebola infection and strong inflammatory response, The Lancet, 355 (2000), 2210-2215.
  27. [27] WHO Ebola Response Team, Ebola virus disease in West Africa—the first 9 months of the epidemic and forward projectionse, New England Journal of Medicine, 371 (2014), 1481-1495.
  28. [28] G. Chowell, H. Nishiura, Transmission dynamics and control of Ebola virus disease (EVD): a review, BMC Medicine, 12 (2014).
  29. [29] P.E. Lekone, B.F. Finkenst¨adt, Statistical inference in a stochastic epidemic SEIR model with control intervention: Ebola as a case study, Biometrics, 62 (2006), 1170-1177.
  30. [30] A. Khan, M. Naveed, M. Dur-e-Ahmad, M. Imran, Estimating the basic reproductive ratio for the Ebola outbreak in Liberia and Sierra Leoney, Infectious Diseases of Poverty, 4 (2015).
  31. [31] http://www.statistiques-mondiales.com/liberia.html, 2015.
  32. [32] H.R. Thieme, Mathematics in Population Biology, In: Princeton Ser. in Theoretical and Computational Biology, United States of America (2003).
  33. [33] P. Rodrigues, J. Cristiana D.F.M. Torres, Cost-effectiveness analysis of optimal control measures for tuberculosis, Bulletin of Mathematical Biology, 76 (2014), 2627-2645.
  34. [34] S.J. Cristiana, D.F.M. Torres, Optimal control for a tuberculosis model with reinfection and post-exposure interventions, Mathematical Biosciences, 244 (2013), 154-164.
  35. [35] M.A.L. Caetano, T. Yoneyama, Optimal and sub-optimal control in Dengue epidemics, Optimal Ccontrol Applications and Methods, 22 (2001), 63-73.
  36. [36] J.F. De Souza, T. Yoneyama, Optimization of investment policies in the control of mosquito-borne diseases, In: American Control Conference, IEEE (1992), 681-682.
  37. [37] E. Jung, S. Lenhart, Z. Feng, Optimal control of treatments in a twostrain tuberculosis model, Discrete & Continuous Dynamical Systems-B, 2 (2002), 473-482.
  38. [38] D. Kirschner, Denise and S. Lenhart, S. Serbin, Optimal control of the chemotherapy of HIV, Journal of Mathematical Biology, 35 (1997), 154- 164.
  39. [39] J.F. De Souza, T. Yoneyama, Optimization of the investment in educational campaigns in the control of insect transmitted diseases, In: IEEE International Conference on Control and Applications, IEEE (1994), 1689- 1694.
  40. [40] D. Ariens, B. Houska, H.J. Ferreau, ACADO Toolkit User’s Manual, Toolkit for Automatic Control and Dynamic Optimization, (2010).
  41. [41] H.G. Bock, K.J. Plitt, A multiple shooting algorithm for direct solution of optimal control problems, IFAC Proceedings Volumes, 17 (1984), 1603- 1608.