In this paper we study the action of double infinite regular matrix D on horizontal cone-adapted irregular shearlet coefficients. Also, we find the frame bounds by D-transform of function whose shearlet series expansion is known.
You will need Adobe Acrobat reader. For more information and free download of the reader, please follow this link.
References
[1] E.J. Cand´es and D.L. Donoho, Curvelets - A surprisingly effective nonadaptive
representation for objects with edges, In: Curves and Surfaces
(L.L. Schumaker et al., Eds.), Vanderbilt University Press, Nashville, TN
(1999).
[2] E.J. Cand´es and D.L. Donoho, Continuous curvelet transform: I. Resolution
of the wavefront set, Appl. Comput. Harmon. Anal., 19 (2005),
162-197.
[3] S. Dahlke, G. Kutyniok, G. Steidl and G. Teschke, Shearlet coorbit spaces
and associated Banach frames, Appl. Comput. Harmon. Anal., 27 (2009),
195-214.
[4] S. Dahlke, G. Kutyniok, P. Maass, C. Sagiv, H.G. Stark and G. Teschke,
The uncertanity principle associated with the continuous shearlet transform,
Int. J. Wavelets Multiresolut. Inf. Process, 6 (2008), 157-181.
[5] S. Dahlke, G. Steidl and G. Teschke, The continuous shearlet transform
in arbitrary space dimensions, Priprint Nr. 2008-7, Philipps-Universit¨at,
Marburg (2008).
[6] L. Debnath and F.A. Shah, Lecture Notes on Wavelet Transform,
Birkh¨auser (2017).
[7] D.L. Donoho and G. Kutyniok, Geometric Separation Using a Wavelet-
Shearlet Dictionary, Proc. Symp. TA’09, Marselle, France (2009).
[8] D.L. Donoho and G. Kutyniok, Microlocal analysis of the geometric separation
problems, Commun. Pure Appl. Math., 66 (2013), 1-47.
[9] K. Guo, G. Kutyniok and D. Labate, Sparse multidimensional representations
using anisotropic dilation and shear operators, In: G. Chen and
M.-J. Lai, Eds., Proc. of Wavelets and Splines, 189-201, Nashboro Press,
Athense, USA (2006).
[10] K. Guo, D. Labate and W.-Q Lim, Edge analysis and identification using
the continuous shearlet transform, Appl. Comput. Harmon. Anal., 27
(2009), 24-46.
[11] K. Guo and D. Labate, Optimaly sparse multidimensional representation
using shearlets, SIAM J. Math. Anal., 9 (2007), 298-318.
[12] S. Jianga and Z. Jiang, Inversion formula for shearlet transform in arbitrary
space dimensions, Numer. Funct. Anal. Optim., 37, No 11 (2018), 1438-
1463.
[13] P. Kittipoom, G. Kutyniok and W.-Q Lim, Irregular shearlet frames: Geometry
and approximation properties, J. Fourier Anal. Appl., 17, No 4
(2011), 604-639.
[14] P. Kittipoom, G. Kutyniok and W.-Q Lim, Construction of compactly
supported shearlet frames, Arxiv1003.5481v2 [Math. FA] (2010), 1-37.
[15] D. Kumar, Sh. Kumar and B. Singh, Cone-adapted continuous shearlet
transform and reconstruction formula, J. Nonlinear Sci. Appl., 9 (2016),
262-269.
[16] G. Kutyniok and D. Labate, Construction of regular and irregular shearlets,
J. Wavelet Theory and Appl., 1 (2007), 1-10.
[17] D. Labate, W.-Q Lim, G. Kutyniok and G. Weiss, Sparse multidimensional
representations using shearlets, Wavelets XI (San Diego), CA (2005), 254-
262, SPIE Proc. Bellingham, WA (2005).
[18] W-Q Lim, Discrete shearlet transform: New multiscale directional image
representation, Proc. SAMPTA 09, Marseille (2009).
[19] F. Moricz and B.E. Rhoades, Comparison theorem for double summability
methods, Pub. Math. Debrecen, 36, No 1-4 (1989), 207-220.