ON FRAMES AND CONE ADAPTED
IRREGULAR SHEARLET COEFFICIENTS

Abstract

In this paper we study the action of double infinite regular matrix D on horizontal cone-adapted irregular shearlet coefficients. Also, we find the frame bounds by D-transform of function whose shearlet series expansion is known.

Citation details of the article



Journal: International Journal of Applied Mathematics
Journal ISSN (Print): ISSN 1311-1728
Journal ISSN (Electronic): ISSN 1314-8060
Volume: 34
Issue: 4
Year: 2021

DOI: 10.12732/ijam.v34i4.12

Download Section



Download the full text of article from here.

You will need Adobe Acrobat reader. For more information and free download of the reader, please follow this link.

References

  1. [1] E.J. Cand´es and D.L. Donoho, Curvelets - A surprisingly effective nonadaptive representation for objects with edges, In: Curves and Surfaces (L.L. Schumaker et al., Eds.), Vanderbilt University Press, Nashville, TN (1999).
  2. [2] E.J. Cand´es and D.L. Donoho, Continuous curvelet transform: I. Resolution of the wavefront set, Appl. Comput. Harmon. Anal., 19 (2005), 162-197.
  3. [3] S. Dahlke, G. Kutyniok, G. Steidl and G. Teschke, Shearlet coorbit spaces and associated Banach frames, Appl. Comput. Harmon. Anal., 27 (2009), 195-214.
  4. [4] S. Dahlke, G. Kutyniok, P. Maass, C. Sagiv, H.G. Stark and G. Teschke, The uncertanity principle associated with the continuous shearlet transform, Int. J. Wavelets Multiresolut. Inf. Process, 6 (2008), 157-181.
  5. [5] S. Dahlke, G. Steidl and G. Teschke, The continuous shearlet transform in arbitrary space dimensions, Priprint Nr. 2008-7, Philipps-Universit¨at, Marburg (2008).
  6. [6] L. Debnath and F.A. Shah, Lecture Notes on Wavelet Transform, Birkh¨auser (2017).
  7. [7] D.L. Donoho and G. Kutyniok, Geometric Separation Using a Wavelet- Shearlet Dictionary, Proc. Symp. TA’09, Marselle, France (2009).
  8. [8] D.L. Donoho and G. Kutyniok, Microlocal analysis of the geometric separation problems, Commun. Pure Appl. Math., 66 (2013), 1-47.
  9. [9] K. Guo, G. Kutyniok and D. Labate, Sparse multidimensional representations using anisotropic dilation and shear operators, In: G. Chen and M.-J. Lai, Eds., Proc. of Wavelets and Splines, 189-201, Nashboro Press, Athense, USA (2006).
  10. [10] K. Guo, D. Labate and W.-Q Lim, Edge analysis and identification using the continuous shearlet transform, Appl. Comput. Harmon. Anal., 27 (2009), 24-46.
  11. [11] K. Guo and D. Labate, Optimaly sparse multidimensional representation using shearlets, SIAM J. Math. Anal., 9 (2007), 298-318.
  12. [12] S. Jianga and Z. Jiang, Inversion formula for shearlet transform in arbitrary space dimensions, Numer. Funct. Anal. Optim., 37, No 11 (2018), 1438- 1463.
  13. [13] P. Kittipoom, G. Kutyniok and W.-Q Lim, Irregular shearlet frames: Geometry and approximation properties, J. Fourier Anal. Appl., 17, No 4 (2011), 604-639.
  14. [14] P. Kittipoom, G. Kutyniok and W.-Q Lim, Construction of compactly supported shearlet frames, Arxiv1003.5481v2 [Math. FA] (2010), 1-37.
  15. [15] D. Kumar, Sh. Kumar and B. Singh, Cone-adapted continuous shearlet transform and reconstruction formula, J. Nonlinear Sci. Appl., 9 (2016), 262-269.
  16. [16] G. Kutyniok and D. Labate, Construction of regular and irregular shearlets, J. Wavelet Theory and Appl., 1 (2007), 1-10.
  17. [17] D. Labate, W.-Q Lim, G. Kutyniok and G. Weiss, Sparse multidimensional representations using shearlets, Wavelets XI (San Diego), CA (2005), 254- 262, SPIE Proc. Bellingham, WA (2005).
  18. [18] W-Q Lim, Discrete shearlet transform: New multiscale directional image representation, Proc. SAMPTA 09, Marseille (2009).
  19. [19] F. Moricz and B.E. Rhoades, Comparison theorem for double summability methods, Pub. Math. Debrecen, 36, No 1-4 (1989), 207-220.
  20. [20] G.M. Robinson, Divergent double sequences and series, Trans. Amer. Math. Soc., 28 (1926), 50-73.