EQUIVALENCE OF WEIGHTED DT-MODULI
OF CONVEX FUNCTIONS

Abstract

This work present a new conclusion for weighted DT-moduli of smoothness (DTMS). Furthermore, the best weighted approximation on a finite closed interval $\mathbb{D} = [-1,1]$ are computed by DTMS. For any $r \in \mathbb{N}_{\circ}$, $0< p \leq \infty$, $1\leq \eta \leq r$ and $\phi (x) = \sqrt{1 - x^{2}}$, the equivalences \begin{equation*}
\mathcal{E}^{(2)}_{n} (f, w_{\alpha, \beta})_{p} \sim \varpi^...
...a_{\mathcal{N}} \Vert, \mathbb{D})_{w_{\alpha, \beta}, p} % \sim
\end{equation*} \begin{equation*}
\sim \, \varpi^{\phi}_{i+1,r-1} \; (f^{(r)}, \Vert \theta_{\m...
...rt, \mathbb{D})_{w_{\alpha+ \frac{1}{2}, \beta+ \frac{1}{2}}, p}
\end{equation*} and \begin{equation*}
\mathcal{E}^{(2)}_{n} (f, w_{\alpha, \beta})_{p} \sim \varpi^...
...lpha, \beta, p} \sim \Vert \theta_{\mathcal{N}} \Vert^{- \eta} %
\end{equation*} \begin{equation*}
\times\, \varpi^{\phi}_{i, 2 \eta} \; (f^{(2 \eta)}, \Vert \theta_{\mathcal{N}} \Vert)_{\alpha+ \eta, \beta+ \eta, p}
\end{equation*} are valid.

Citation details of the article



Journal: International Journal of Applied Mathematics
Journal ISSN (Print): ISSN 1311-1728
Journal ISSN (Electronic): ISSN 1314-8060
Volume: 34
Issue: 4
Year: 2021

DOI: 10.12732/ijam.v34i4.2

Download Section



Download the full text of article from here.

You will need Adobe Acrobat reader. For more information and free download of the reader, please follow this link.

References

  1. [1] M. Al-Muhja, A Korovkin type approximation theorem and its applications, Abstract and Applied Analysis, 2014 (2014), 6 pp.
  2. [2] M. Al-Muhja, H. Akhadkulov, N. Ahmad, Equivalence of weighted DT-moduli of (co)convex functions, International Journal of Mathematics and Computer Science, 16 (2021), 407-422.
  3. [3] M. Al-Muhja, H. Akhadkulov, N. Ahmad, Estimates for constrained approximation in L space: Piecewise polynomial, International Journal of Mathematics and Computer Science, 16 (2021), 389-406.
  4. [4] Z. Ditzian, V. Totik, Moduli of Smoothness, Springer Ser. in Computational Mathematics 9, Springer-Verlag, New York (1987).
  5. [5] K. Kopotun, D. Leviatan, I. Shevchuk, New moduli of smoothness, Publications de l’Institut Math´ematique (Beograd), 96 (2014), 169-180.
  6. [6] K. Kopotun, D. Leviatan, I. Shevchuk, On moduli of smoothness with Jacobi weights, Ukrainian Mathematical Journal, 70 (2018), 379-401.
  7. [7] K. Kopotun, D. Leviatan, I. Shevchuk, On weighted approximation with Jacobi weights, Journal of Approximation Theory, 237 (2019), 96-112.
  8. [8] K. Kopotun, Weighted moduli of smoothness of k-monotone functions and applications, Journal of Approximation Theory, 192 (2015), 102-131.