A NOVEL KIND OF THE MULTI-INDEX WHITTAKER
FUNCTION AND ITS CERTAIN PROPERTIES
Musharraf Ali1, Mohd Ghayasuddin2, Waseem A. Khan3,
Kottakkaran S. Nisar4 1 Department of Mathematics
G.F. College
Shahjahanpur - 242001, INDIA 2 Department of Mathematics
Integral University
Centre Shahjahanpur - 242001, INDIA 3 Department of Mathematics and Natural Sciences
Prince Mohammad Bin Fahd University, P.O. Box: 1664
Al Khobar - 31952, SAUDI ARABIA 4 Department of Mathematics, College of Arts and Sciences
Prince Sattam bin Abdulaziz University
Wadi Aldawaser, SAUDI ARABIA
In this paper, we propose a novel expansion of the Whittaker function
by utilizing the known expanded confluent hypergeometric function of the first kind
.
Moreover, some integral representations, transformation formulae, integral
transforms and a differential formula also established.
You will need Adobe Acrobat reader. For more information and free download of the reader, please follow this link.
References
[1] M. Ali, M. Ghayasuddin and N.U. Khan, Certain new extension of Whittaker
function and its properties, Indian J. Math. 62, No 1 (2020), 81-96.
[2] J. Choi, A.K. Rathie and R.K. Parmar, Extension of extended beta, hypergeometric
and confluent hypergeometric functions, Honam Math. J., 36,
No 2 (2014), 357-385.
[3] J. Choi, M. Ghayasuddin and N.U. Khan, Generalized extended Whittaker
function and its properties, Appl. Math. Sci., 9, No 31 (2015), 6529-6541.
[4] M.A. Chaudhry, A. Qadir, M. Rafique and S.M. Zubair, Extension of Euler’s
beta function, J. Comput. Appl. Math., 78, No 1 (1997), 19-32.
[5] M.A. Chaudhry, A. Qadir, H.M. Srivastava and R.B. Paris, Extended hypergeometric
and confluent hypergeometric functions, Appl. Math. Comput.,
159, No 2 (2004), 589-602.
[6] S.A. Dar and R.B. Paris, On the properties of the (p, ν)-extension of the
Whittaker function Mk,μ(z), 2018; arXiv:1801.09921.
[7] S.A. Dar and M. Shadab, (p, q)-extension of the Whittaker function and its
certain properties, Commun. Korean Math. Soc., 33, No 2 (2018), 619-630.
[8] A. Erd´elyi, W. Magnus, F. Oberhettinger and F.G. Tricomi, Tables of
Integral Transforms, Vol. 1, MacGraw-Hill, New York (1954).
[9] A. Erd´elyi, W. Magnus, F. Oberhettinger and F.G. Tricomi, Higher Transcendental
Functions, Vol. 1, Bateman Manuscript Project, MacGraw-Hill,
New York (1953).
[10] M. Ghayasuddin, N.U. Khan and M. Ali, A study of extended beta, Gauss
and confluent hypergeometric function, Intern. J. Appl. Math. 33, No 1
(2020), 1-13; DOI: 10.12732/ijam.v33i1.1.
[11] V.S. Kiryakova, Multiple (multiindex) Mittag-Leffler functions and relations
to generalized fractional calculus, J. Comput. Appl. Math. 118
(2000), 241-259.
[12] V. Kiryakova, The multi-index Mittag-Leffler functions as an important
class of special functions of fractional calculus, Comput. Math. with Appl.
59 (2010), 1885-1895.
[13] V. Kiryakova, A guide to special functions in fractional calculus, Mathematics,
9, No 1 (2021), Art. 106, 35 pp.; DOI: 10.3390/math9010106.
[14] D.M. Lee, A.K. Rathie, R.K. Parmar and Y.S. Kim, Generalization of extended
beta function, hypergeometric and confluent hypergeometric functions,
Honam. Math. J., 33, No 2 (2011), 187-206.
[15] Y.L. Luke, The Special Functions and Their Approximations, Vol. 1, New
York, Academic Press (1969).
[16] S. Mubeen, G. Rahman, K.S. Nisar, J. Choi and M. Arshad, An extended
beta function and its properties, Far East J. Math. Sci., 102, No 7 (2017),
1545-1557.
[17] G.M. Mittag-Leffler, Sur la repr´esentation analytique d’une fonction
monog´ene (cinqui´eme note), Acta Math., 29, No 1 (1905), 101–181.
[18] D.K. Nagar, R.A.M. Vasquez and A.K. Gupta, Properties of the extended
Whittaker function, Progress in Appl. Math., 6, No 2 (2013), 70-80.
[19] E. ¨Ozergin, M.A. ¨Ozarslan and A. Altin, Extension of gamma, beta and
hypergeometric functions, J. Comput. Appl. Math., 235, No 16 (2011),
4601-4610.
[20] J. Paneva-Konovska, A survey on Bessel type functions as multi-index
Mittag-Leffler functions: Differential and integral relations, Intern. J.
Appl. Math., 32, No 3 (2019), 357–380; DOI: 10.12732/ijam.v32i3.1.
[21] J. Paneva-Konovska, V. Kiryakova, On the multi-indexMittag-Leffler functions
and their Mellin transforms, Intern. J. Appl. Math.. 33, No 4 (2020),
549-571; DOI: 10.12732/ijam.v33i4.1.
[22] P.I. Pucheta, A new extended beta function, Intern. J. Math. Appl., 5, No
3 (2017), 255-260.
[23] R.K. Parmar, A new generalization of gamma, beta, hypergeometric and
confluent hypergeometric function, Le Matematiche, LXVIII (2013), 33-
52.
[24] R.K. Parmar, P. Chopra and R.B. Paris, On an extension of extended beta
and hypergeometric functions, J. Classical Anal., 11, No 2 (2017), 91-106.
[25] E.D. Rainville, Special Functions, The Macmillan Company, New York
(1960).
[26] G. Rahman, S. Mubeen, K.S. Nisar and J. Choi, (p, q)-Whittaker function
and associated properties and formulas, 2017; arXiv:1710.07196.
[27] G. Rahman, K.S. Nisar and J. Choi, An extension of Whittaker function,
2018; arXiv:1801.08032v1.
[28] M. Shadab, S. Jabee and J. Choi, An extension of beta function and its
application, Far East J. Math. Sci., 103, No 1 (2018), 235-251.
[29] H.M. Srivastava and H.L. Manocha, A Treatise on Generating Functions,
Ellis Horwood Limited, Chichester (1984).
[30] H.M. Srivastava and J. Choi, Zeta and q-zeta Functions and Associated
Series and Integral, Elsevier Sci. Publ., Amsterdam, London and New York
(2012).
[31] E.T. Whittaker, An expression of certain known functions as generalized
hypergeometric functions, Bull. Amer. Math. Soc., 10, No 3 (1903), 125-
134.
[32] E.T. Whittaker and G.N. Watson, A Course of Modern Analysis, Reprint
of the 4th Ed., Cambridge Math. Library, Cambridge University Press,
Cambridge (1990).
[33] S. Yakubovich and Yu. Luchko, The Hypergeometric Approach to Integral
Transform and Convolutions, Kluwer Acad. Publ., Dordrecht-Boston,
London (1994).