A NOVEL KIND OF THE MULTI-INDEX WHITTAKER
FUNCTION AND ITS CERTAIN PROPERTIES

Abstract

In this paper, we propose a novel expansion of the Whittaker function $M_{\eta,\zeta}(w)$ by utilizing the known expanded confluent hypergeometric function of the first kind $\Phi_{p}^{(\lambda_{1},\cdots,\lambda_{s},\delta_{1},\cdots,\delta_{s})}(\kappa_{2}; \kappa_{3}; w)$. Moreover, some integral representations, transformation formulae, integral transforms and a differential formula also established.

Citation details of the article



Journal: International Journal of Applied Mathematics
Journal ISSN (Print): ISSN 1311-1728
Journal ISSN (Electronic): ISSN 1314-8060
Volume: 34
Issue: 6
Year: 2021

DOI: 10.12732/ijam.v34i6.1

Download Section



Download the full text of article from here.

You will need Adobe Acrobat reader. For more information and free download of the reader, please follow this link.

References

  1. [1] M. Ali, M. Ghayasuddin and N.U. Khan, Certain new extension of Whittaker function and its properties, Indian J. Math. 62, No 1 (2020), 81-96.
  2. [2] J. Choi, A.K. Rathie and R.K. Parmar, Extension of extended beta, hypergeometric and confluent hypergeometric functions, Honam Math. J., 36, No 2 (2014), 357-385.
  3. [3] J. Choi, M. Ghayasuddin and N.U. Khan, Generalized extended Whittaker function and its properties, Appl. Math. Sci., 9, No 31 (2015), 6529-6541.
  4. [4] M.A. Chaudhry, A. Qadir, M. Rafique and S.M. Zubair, Extension of Euler’s beta function, J. Comput. Appl. Math., 78, No 1 (1997), 19-32.
  5. [5] M.A. Chaudhry, A. Qadir, H.M. Srivastava and R.B. Paris, Extended hypergeometric and confluent hypergeometric functions, Appl. Math. Comput., 159, No 2 (2004), 589-602.
  6. [6] S.A. Dar and R.B. Paris, On the properties of the (p, ν)-extension of the Whittaker function Mk,μ(z), 2018; arXiv:1801.09921.
  7. [7] S.A. Dar and M. Shadab, (p, q)-extension of the Whittaker function and its certain properties, Commun. Korean Math. Soc., 33, No 2 (2018), 619-630.
  8. [8] A. Erd´elyi, W. Magnus, F. Oberhettinger and F.G. Tricomi, Tables of Integral Transforms, Vol. 1, MacGraw-Hill, New York (1954).
  9. [9] A. Erd´elyi, W. Magnus, F. Oberhettinger and F.G. Tricomi, Higher Transcendental Functions, Vol. 1, Bateman Manuscript Project, MacGraw-Hill, New York (1953).
  10. [10] M. Ghayasuddin, N.U. Khan and M. Ali, A study of extended beta, Gauss and confluent hypergeometric function, Intern. J. Appl. Math. 33, No 1 (2020), 1-13; DOI: 10.12732/ijam.v33i1.1.
  11. [11] V.S. Kiryakova, Multiple (multiindex) Mittag-Leffler functions and relations to generalized fractional calculus, J. Comput. Appl. Math. 118 (2000), 241-259.
  12. [12] V. Kiryakova, The multi-index Mittag-Leffler functions as an important class of special functions of fractional calculus, Comput. Math. with Appl. 59 (2010), 1885-1895.
  13. [13] V. Kiryakova, A guide to special functions in fractional calculus, Mathematics, 9, No 1 (2021), Art. 106, 35 pp.; DOI: 10.3390/math9010106.
  14. [14] D.M. Lee, A.K. Rathie, R.K. Parmar and Y.S. Kim, Generalization of extended beta function, hypergeometric and confluent hypergeometric functions, Honam. Math. J., 33, No 2 (2011), 187-206.
  15. [15] Y.L. Luke, The Special Functions and Their Approximations, Vol. 1, New York, Academic Press (1969).
  16. [16] S. Mubeen, G. Rahman, K.S. Nisar, J. Choi and M. Arshad, An extended beta function and its properties, Far East J. Math. Sci., 102, No 7 (2017), 1545-1557.
  17. [17] G.M. Mittag-Leffler, Sur la repr´esentation analytique d’une fonction monog´ene (cinqui´eme note), Acta Math., 29, No 1 (1905), 101–181.
  18. [18] D.K. Nagar, R.A.M. Vasquez and A.K. Gupta, Properties of the extended Whittaker function, Progress in Appl. Math., 6, No 2 (2013), 70-80.
  19. [19] E. ¨Ozergin, M.A. ¨Ozarslan and A. Altin, Extension of gamma, beta and hypergeometric functions, J. Comput. Appl. Math., 235, No 16 (2011), 4601-4610.
  20. [20] J. Paneva-Konovska, A survey on Bessel type functions as multi-index Mittag-Leffler functions: Differential and integral relations, Intern. J. Appl. Math., 32, No 3 (2019), 357–380; DOI: 10.12732/ijam.v32i3.1.
  21. [21] J. Paneva-Konovska, V. Kiryakova, On the multi-indexMittag-Leffler functions and their Mellin transforms, Intern. J. Appl. Math.. 33, No 4 (2020), 549-571; DOI: 10.12732/ijam.v33i4.1.
  22. [22] P.I. Pucheta, A new extended beta function, Intern. J. Math. Appl., 5, No 3 (2017), 255-260.
  23. [23] R.K. Parmar, A new generalization of gamma, beta, hypergeometric and confluent hypergeometric function, Le Matematiche, LXVIII (2013), 33- 52.
  24. [24] R.K. Parmar, P. Chopra and R.B. Paris, On an extension of extended beta and hypergeometric functions, J. Classical Anal., 11, No 2 (2017), 91-106.
  25. [25] E.D. Rainville, Special Functions, The Macmillan Company, New York (1960).
  26. [26] G. Rahman, S. Mubeen, K.S. Nisar and J. Choi, (p, q)-Whittaker function and associated properties and formulas, 2017; arXiv:1710.07196.
  27. [27] G. Rahman, K.S. Nisar and J. Choi, An extension of Whittaker function, 2018; arXiv:1801.08032v1.
  28. [28] M. Shadab, S. Jabee and J. Choi, An extension of beta function and its application, Far East J. Math. Sci., 103, No 1 (2018), 235-251.
  29. [29] H.M. Srivastava and H.L. Manocha, A Treatise on Generating Functions, Ellis Horwood Limited, Chichester (1984).
  30. [30] H.M. Srivastava and J. Choi, Zeta and q-zeta Functions and Associated Series and Integral, Elsevier Sci. Publ., Amsterdam, London and New York (2012).
  31. [31] E.T. Whittaker, An expression of certain known functions as generalized hypergeometric functions, Bull. Amer. Math. Soc., 10, No 3 (1903), 125- 134.
  32. [32] E.T. Whittaker and G.N. Watson, A Course of Modern Analysis, Reprint of the 4th Ed., Cambridge Math. Library, Cambridge University Press, Cambridge (1990).
  33. [33] S. Yakubovich and Yu. Luchko, The Hypergeometric Approach to Integral Transform and Convolutions, Kluwer Acad. Publ., Dordrecht-Boston, London (1994).