GENERALIZATION OF SOME TYPES OF DIFFERENCE
SEQUENCE SPACE BY I-CONVERGENCE

Abstract

The purpose of this paper is to use the notions of I-convergence of sequences and a Musielak-Orlicz function, as well as a sequence of modulus functions, to study certain difference sequence spaces, which are generalizations of the spaces investigated in [#!RajK!#]. Among other results, we investigated some algebraic and topological properties of these spaces. Moreover, we establish some inclusion relationships between these spaces under certain conditions on the mathematical tools that define them.

Citation details of the article



Journal: International Journal of Applied Mathematics
Journal ISSN (Print): ISSN 1311-1728
Journal ISSN (Electronic): ISSN 1314-8060
Volume: 35
Issue: 1
Year: 2022

DOI: 10.12732/ijam.v35i1.2

Download Section



Download the full text of article from here.

You will need Adobe Acrobat reader. For more information and free download of the reader, please follow this link.

References

  1. [1] J. Bana´s, M. Mursaleen, Sequences Spaces and Measures of Noncompactness with Applications to Differential and Integral Equations, Springer, New Delhi (2014).
  2. [2] J. A. Fridy, On statistical convergence, Analysis, 5 (1985), 301-313.
  3. [3] P. K. Kamthan, M. Gupta, Sequences Spaces and Series, Marcel Dekker, New York (1981).
  4. [4] H. Kızmaz, On certain sequence spaces, Canad. Math. Bull., 24 (1981), 169-176.
  5. [5] S. Pehlivan, B. Fisher, On some sequence spaces, Indian J. Pure Appl. Math., 25 (10) (1994), 1067-1071.
  6. [6] P. Kostyrko, T. Sal´at, W.Wilezynski, I-convergence, Real Anal. Exchange, 26 (2000), 669-686.
  7. [7] Krasnosel’ski˘i, Ya. B. Ruticki˘i, Convex Functions and Orlicz Spaces, P. Noordhoff Ltd., Groningen (1961).
  8. [8] K. Kuratowski, Topologie I, Monografie Matematyczne Tom 3, PWNPolish Scientific Publishers, Warszawa (1933).
  9. [9] J. Lindenstrauss, L. Tzafriri, On Orlicz sequences spaces, Israel J. Math., 10 (1971), 379-390.
  10. [10] I. J. Maddox, Elements of Functional Analysis, Cambridge University Press, London (1970).
  11. [11] M. Mursaleen, Applied Summability Methods, Springer, Cham (2014).
  12. [12] M. Mursaleen, M. A. Khan, Qamaruddin, Difference sequence spaces defined by Orlicz function, Demonstratio Math., 32, No 1 (1999), 145-150.
  13. [13] K. Raj, A. Kili¸cman, On certain generalized paranormed spaces, J. Inequal. Appl., 2015 (2015), Art. 37, 12 pp.; DOI 10.1186/s13660-015-0565-z. 38 J. Sanabria, E. Rodr´ıguez, J. Berm´udez
  14. [14] T. ´Sal´at, On statistical convergent sequences of real numbers, Math. Slovaca 30 (1980), 139-150.
  15. [15] B. C. Tripathy, Matrix transformation between some classes of sequences, J. Math. Anal. Appl., 206 (1997), 448-450.
  16. [16] B. C. Tripathy, On statistical convergence, Proc. Estonian Acad. Sci. Phy. Math. Analysis, 47 (1998), 299-303.
  17. [17] B. C. Tripathy, A. Esi, B. Tripathy, On a new type of generalized difference Ces`aro sequence spaces, Soochow J. Math., 31, No 3 (2005), 333-340.
  18. [18] B. C. Tripathy, B. Hazarika, Paranorm I-convergent sequence spaces, Math. Slovaca, 59 (2009), 485-494.
  19. [19] B. C. Tripathy, B. Hazarika, Some I-convergent sequence spaces defined by Orlicz functions, Acta Math. Appl. Sin. Engl. Ser., 27, No 1 (2011), 149-154.