A COMPARATIVE STUDY OF VARIOUS METHODS
OF ESTIMATION FOR GOMPERTZ-LINDLEY DISTRIBUTION

Abstract

This paper deals with a comparative study of different methods of estimation for Gompertz-Lindley distribution. Simulation studies are carried out and the most efficient estimator is the one whose bias is close to zero with smaller mean-square error. A real data set is analyzed to illustrate the different procedures.

Citation details of the article



Journal: International Journal of Applied Mathematics
Journal ISSN (Print): ISSN 1311-1728
Journal ISSN (Electronic): ISSN 1314-8060
Volume: 35
Issue: 2
Year: 2022

DOI: 10.12732/ijam.v35i2.12

Download Section



Download the full text of article from here.

You will need Adobe Acrobat reader. For more information and free download of the reader, please follow this link.

References

  1. [1] F. Alqallaf, M.E. Ghitany, M.F. Alfahad, A new two-parameter distribution with decreasing, increasing, bathtub hazard rate function and its applications, International Journal of Applied Mathematics, 33, No 3 (2020), 523–548; DOI: 10.12732/ijam.v33i3.11
  2. [2] S. Dey, S. Ali, C. Park, Weighted exponential distribution: properties and different methods of estimation, Journal of Statistical Computation and Simulation (2015), 1–21.
  3. [3] S. Dey, T. Dey, D. Kundu, Two-parameter Rayleigh distribution: Different methods of estimation, American Journal of Mathematical and Management Sciences, 33 (2014), 55-74.
  4. [4] M.E. Ghitany, S.M. Aboukhamseen, A.A. Baqer, R.C. Gupta, Gompertz-Lindley distribution and associated inference, Communications in Statistics - Simulation and Computation (2019), 1-20; DOI: 10.1080/03610918.2019.1699113
  5. [5] M.E. Ghitany, D.K. Al-Mutairi, F.A. Al-Awadhi, M.M. Al-Burais, Marshall-Olkin extended Lindley distribution and its applications, International Journal of Applied Mathematics, 25, No 5 (2012), 709-721.
  6. [6] M. E. Ghitany, Marshall-Olkin extended Pareto distribution and its application, International Journal of Applied Mathematics, 18 (1) (2005), 17-31.
  7. [7] R.D. Gupta, D. Kundu, Generalized exponential distribution: different method of estimations, Journal of Statistical Computation and Simulation, 69 (2001), 315-337.
  8. [8] J. Mazucheli, M. E. Ghitany, F. Louzada, Comparisons of ten estimation methods for the parameters of Marshall-Olkin extended exponential distribution, Communications in Statistics - Simulation and Computation, 46 (2017), 5627-5645.
  9. [9] J. Mazucheli, F. Louzada, M. E. Ghitany, Comparison of estimation methods for the parameters of the weighted Lindley distribution, Applied Mathematics and Computation, 220 (2013), 463-471.
  10. [10] F. Proschan, Theoretical explanation of observed decreasing failure rate. Technometrics, 5 (1963), 375-383.
  11. [11] R Core Team, R: A Language and Environment for Statistical Computing, Vienna (2021).
  12. [12] M. Teimouri, S.M. Hoseini, S. Nadarajah, Comparison of estimation methods for the Weibull distribution, Statistics, 47 (2013), 93-109.
  13. [13] J. Yang, D.W. Scott, Robust fitting of a Weibull model with optional censoring, Computational Statistics and Data Analysis, 67 (2013), 149161.
  14. [14] G. Yari, A. Mirhabibi, A. Saghafi, Estimation of the Weibull parameters by Kullback-Leibler divergence of survival functions, Applied Mathematics and Information Sciences, 7 (2013), 187-192.