ON THE GENERALIZED KOBER TYPE FRACTIONAL
q-INTEGRAL OPERATOR INVOLVING A BASIC
ANALOGUE OF H-FUNCTION
Jaime Castillo1, Leda Galue2 1Researching Center, University of La Guajira
Faculty of Engineering, Block 6
Riohacha - 440002, COLOMBIA 2CIMA, University of Zulia
Maracaibo - 4001, VENEZUELA
In this paper, the generalized fractional q-integral operator of the
Kober type is applied to the basic analogue of the H-function. Results involving the basic hypergeometric functions Jν (x; q), Yν (x; q), Kν (x; q), Hν (x; q), r+1 phi r (·), Mac-Robert's E-function and several elementary q-functions, have been deduced as particular cases of the main result.
You will need Adobe Acrobat reader. For more information and free download of the reader, please follow this link.
References
[1] R. P. Agarwal, A q-analogue of MacRobert’s generalized E-function,
Ganita, 11 (1960), 49-63.
[2] J. Castillo, L. Galué, On a fractional q-integral operator involving the
basic analogue of Fox-Wright function, International Journal of Applied
Mathematics, 33, No 6 (2020), 969-994; doi: 10.12732/ijam.v33i6.2.
[3] M. Delgado, L. Galué, Fractional q-integral operator involving basic hypergeometric function, Algebras Groups Geom., 25 (2008), 53-74.
ON THE GENERALIZED KOBER TYPE FRACTIONAL...
261
[4] L. Galué, Generalized Erdélyi-Kober fractional q-integral operator, Kuwait
J. Sci. Eng., 36 (2009), 21-34.
[5] L. Galué, Some results on a fractional q-integral operator involving generalized basic hypergeometric function, Rev. Téc. Ing. Univ. Zulia, 35 (2012),
302-310.
[6] M. Garg, L. Chanchlani, Kober fractional q-derivative operators, Le
Matematiche, 66 (2011), 13-26.
[7] G. Gasper, M. Rahman, Basic Hypergeometric Series, Cambridge Univ.
Press, Cambridge (2004).
[8] S.L. Kalla, R.K. Yadav and S.D. Purohit, On the Riemann-Liouville fractional q-integral operator involving a basic analogue of Fox H-function,
Fract. Calc. Appl. Anal., 8 (2005), 313-322.
[9] R.K. Saxena, G.C. Modi and S.L. Kalla, A basic analogue of Fox’s Hfunction, Rev. Téc. Ing. Univ. Zulia, 6 (1983), 139-143.
[10] R.K. Saxena, R. Kumar, Recurrence relations for the basic analogue of the
H-function, J. Nat. Acad. Math., 8 (1990), 48-54.
[11] R.K. Saxena, R.K. Yadav, S.D. Purohit and S.L. Kalla, Kober fractional
q-integral operator of the basic analogue of the H-function, Rev. Téc. Ing.
Univ. Zulia, 28 (2005), 154-158.
[12] R. K. Yadav, S. D. Purohit, Application of Riemann-Liouville fractional
q-integral operator to basic hypergeometric functions, Acta Ciencia Indica,
30 (2004), 593-600.
[13] R. K. Yadav, S. D. Purohit, On applications of Kober fractional q-integral
operator to certain basic hypergeometric functions, J. Rajasthan Acad.
Phy. Sci., 5 (2006), 437-448.
[14] R.K. Yadav, S.L. Kalla and G. Kaur, On fractional q-integral operator
involving the basic multiple hypergeometric functions, Algebras Groups
Geom., 27 (2010), 97-116.