A previous analysis by the author (published previously in this Journal) showed that a limit formula could be deduced from Dorodnitzyn's compressible boundary layer model by the application of Bayada and Chambat's diffeomorphism. This article is the second part of the same research. Now, a limit formula in terms of the shear stress is deduced from Dorodnitzyn's shear stress model.
You will need Adobe Acrobat reader. For more information and free download of the reader, please follow this link.
References
[1] M.K. Kerimov, On the centenary of the birth of academician Anatolii Alekseevich Dorodnicyn, Comput. Math. and Math. Phys., 50 (2010), 1969-
1974; DOI: 10.1134/S0965542510120018.
[2] G. Bayada and M. Chambat, The transition between the Stokes equations
and the Reynolds equation: A mathematical proof, Appl. Math. Optim.,
14, No 1 (1986), 73-93; DOI: 10.1007/BF01442229.
[3] V.G. Maz’ya and S.V. Poborchi, Differentiable Functions on Bad Domains,
World Scientific (1998); DOI: 10.1142/3197.
[5] J. Nečas, Les Méthodes directes en théorie des équations elliptiques, Masson
et Cie (1967).
[6] H. Blasius, The boundary layers in fFluids with little friction, NACA-TM-
1256, 56, No 1 (1950).
[7] A.A. Dorodnitzyn, Laminar boundary layer in compressible fluid, Comptes
Rendus l’Académie des Sciences de l’URSS, 34, No 8 (1942), 213-219.
[8] D. Bolton, The computation of equivalent potential temperature, Monthly
Weather Review, 108, No 7 (1980), 1046-1053.
[9] K. Saha, The Earth’s Atmosphere, Springer, Berlin-Heidelberg (2008);
DOI: 10.1007/978-3-540-78427-2.
[10] O.G. Tietjens, Fundamentals of Hydro- and Aerodynamics, Dover Publications Inc., New York (1934).
[11] A.J. Smits and J.-P. Dussauge, Turbulent Shear Layers in Supersonic Flow.
Springer-Verlag, New York (2006).
[12] C.V. Valencia-Negrete, C. Gay-Garcı́a, A.A. Carsteanu, Reynolds’ limit
formula for Dorodnitzyn’s atmospheric boundary layer in convective
conditions, Int. J. Appl. Math., 31, No 4 (2018), 673-695; DOI:
10.12732/ijam.v31i4.12.
[13] L. Chupin and R. Sart, Compressible flows: New existence results and
justification of the Reynolds asymptotic in thin films, Asymptotic Analysis
76, No 3-4 (2012), 193-231; DOI: 10.3233/ASY-2011-1070.
[14] L. Crocco, Transmission of heat from a flat plate to a fluid flowing at high
velocity, NACA-TM-690 (1932).
[15] R.G. Bartle, The Elements of Integration and Lebesgue Measure, John
Wiley & Sons, Inc. (1966); DOI: 10.1002/9781118164471.
[16] L.C. Evans, A survey of entropy methods for partial differential equations,
Bull. Amer. Math. Soc., 41 (2004), 409-438; DOI: 10.1090/S0273-0979-04-
01032-8.