ONE CLASS OF GENERALIZED CONVEX
FUNCTIONS IN THE SENSE OF BECKENBACH

Abstract

The present study is mainly concerned with one class of generalized convex functions in the sense of Beckenbach. The existence of the support curves is presented for this class, which leads to its generalized convexity. In addition, an extremum property of these functions is given. Furthermore, Hadamard's inequality for this class is obtained.

Citation details of the article



Journal: International Journal of Applied Mathematics
Journal ISSN (Print): ISSN 1311-1728
Journal ISSN (Electronic): ISSN 1314-8060
Volume: 35
Issue: 4
Year: 2022

DOI: 10.12732/ijam.v35i4.6

Download Section



Download the full text of article from here.

You will need Adobe Acrobat reader. For more information and free download of the reader, please follow this link.

References

  1. [1] M. S. S. Ali, On certain properties for two classes of generalized convex functions, Abstract and Appl. Anal., 2016 (2016), 7 pp.; http://dx.doi.org/10.1155/2016/4652038.
  2. [2] G. Alirezaei, R. Mazhar, On exponentially concave functions and their impact in information theory, J. Inform. Theory Appl., 9, No 5 (2018), 265-274; http://dx.doi.org/10.1109/ITA.2018.8503202.
  3. [3] T. Antczak, On (p, r)-invex sets and functions, J. Math. Appl., 263 (2001), 355-379; https://doi.org/10.1006/jmaa.2001.7574.
  4. [4] M. Avriel, r-convex functions, Math. Program., 2 (1972), 309-323; https://doi.org/10.1007/BF01584551.
  5. [5] E. F. Beckenbach, Generalized convex functions, Bull. Amer. Math. Soc., 43, No 6 (1937), 363-371.
  6. [6] E. F. Beckenbach, R. H. Bing, On generalized convex functions, Trans. Amer. Math. Soc., 58 (1945), 220-230.
  7. [7] S. N. Bernstein, Sur les fonctions absolument monotones, Acta Math., 52 (1929), 1-66.
  8. [8] F. F. Bonsall, The characterization of generalized convex functions, The Quart. J. of Math., Oxford Ser., 1 (1950), 100-111.
  9. [9] S. Dragomir, On some new inequalities of Hermite-Hadamard type for m- convex functions, Tamkang J. of Math., No 1 33 (2002), 45-56.
  10. [10] N. Faried, M. S. S. Ali, A. A. Badr, On Pólya and Steffensen integral inequalities for trigonometrically ρ-convex functions, Int. J. Appl. Math., 31, No 6 (2018), 779-795; http://dx.doi.org/10.12732/ijam.v31i6.7.
  11. [11] J. W. Green, Support, convergence, and differentiability properties of generalized convex functions, Proc. Amer. Math. Soc., 4 (1953), 391-396.
  12. [12] D. A. Ion, Some estimates on the Hermite-Hadamard inequality through quasi-convex functions, Annals of the Univ. of Craiova - Math. and Computer Sci. Ser., 34 (2007), 82-87.
  13. [13] I. V. Konnov, D. T. Luc, A. M. Rubinov, Generalized Convexity and Related Topics, Springer, Berlin (2007).
  14. [14] D. Malyuta, B. Açikmeşe, Lossless convexification of optimal control problems with semi-continuous inputs, arXiv e-print, 19 Nov (2019); https://doi.org/10.48550/arXiv.1911.09013.
  15. [15] M. J. Miles, An extremum property of convex functions, Amer. Math. Monthly, 76 (1969), 921-922.
  16. [16] D. S. Mitrinović, L. B. Lacković, Hermite and convexity, Aequationes Mathematicae, 28, No 3 (1985), 229-232.
  17. [17] M. A. Noor, K. I. Noor, On exponentially convex functions, J. of Orissa Math. Soc., 38 (2019), 33-51.
  18. [18] M. A. Noor, K. I. Noor, Strongly exponentially convex functions, U. P. B. Bull. Sci. Appl. Math. Ser. A, 8 (2019), 75-84.
  19. [19] M. A. Noor, K. I. Noor, Strongly exponentially convex functions and their properties, J. Advanc. Math. Studies, 9, No 2 (2019), 177-185.
  20. [20] J. Pečarić, J. Jakšetić, On exponentially convexity, Euler-Radau expansions and stolarsky means, Rad Hrvat. Matematicke Znanosti, 515, No 17 (2013), 81-94.
  21. [21] M. M. Peixoto, Generalized convex functions and second order differential inequalitities, Bull. Amer. Math. Soc., 55, No 6 (1949), 563-572.
  22. [22] A. W. Roberts, D. E. Varberg, Convex Functions, Academic Press, New York (1973).
  23. [23] Y. X. Zhao, S. Y. Wang, L. Coladas Uria, Characterizations of r-convex functions, J. Optim. Theory Appl., 145 (2010), 186-195.