ONE CLASS OF GENERALIZED CONVEX
FUNCTIONS IN THE SENSE OF BECKENBACH
Asmaa A. Badr1, Nashat Faried2, Mohamed S.S. Ali3 1Department of Mathematics, Faculty of Education
Ain Shams University, Cairo, EGYPT 2 Department of Mathematics, Faculty of Science
Ain Shams University, Cairo, EGYPT 3Department of Mathematics, Faculty of Education
Ain Shams University, Cairo, EGYPT
The present study is mainly concerned with one class of generalized convex functions in the sense of Beckenbach. The existence of the support curves is presented for this class, which leads to its generalized convexity. In addition, an extremum property of these functions is given. Furthermore, Hadamard's inequality for this class is obtained.
You will need Adobe Acrobat reader. For more information and free download of the reader, please follow this link.
References
[1] M. S. S. Ali, On certain properties for two classes of generalized
convex functions, Abstract and Appl. Anal., 2016 (2016), 7 pp.;
http://dx.doi.org/10.1155/2016/4652038.
[2] G. Alirezaei, R. Mazhar, On exponentially concave functions and their
impact in information theory, J. Inform. Theory Appl., 9, No 5 (2018),
265-274; http://dx.doi.org/10.1109/ITA.2018.8503202.
[3] T. Antczak, On (p, r)-invex sets and functions, J. Math. Appl., 263 (2001),
355-379; https://doi.org/10.1006/jmaa.2001.7574.
[5] E. F. Beckenbach, Generalized convex functions, Bull. Amer. Math. Soc.,
43, No 6 (1937), 363-371.
[6] E. F. Beckenbach, R. H. Bing, On generalized convex functions, Trans.
Amer. Math. Soc., 58 (1945), 220-230.
[7] S. N. Bernstein, Sur les fonctions absolument monotones, Acta Math., 52
(1929), 1-66.
[8] F. F. Bonsall, The characterization of generalized convex functions, The
Quart. J. of Math., Oxford Ser., 1 (1950), 100-111.
[9] S. Dragomir, On some new inequalities of Hermite-Hadamard type for m-
convex functions, Tamkang J. of Math., No 1 33 (2002), 45-56.
[10] N. Faried, M. S. S. Ali, A. A. Badr, On Pólya and Steffensen integral
inequalities for trigonometrically ρ-convex functions, Int. J. Appl. Math.,
31, No 6 (2018), 779-795; http://dx.doi.org/10.12732/ijam.v31i6.7.
[11] J. W. Green, Support, convergence, and differentiability properties of generalized convex functions, Proc. Amer. Math. Soc., 4 (1953), 391-396.
[12] D. A. Ion, Some estimates on the Hermite-Hadamard inequality through
quasi-convex functions, Annals of the Univ. of Craiova - Math. and Computer Sci. Ser., 34 (2007), 82-87.
[13] I. V. Konnov, D. T. Luc, A. M. Rubinov, Generalized Convexity and Related Topics, Springer, Berlin (2007).
[14] D. Malyuta, B. Açikmeşe, Lossless convexification of optimal control
problems with semi-continuous inputs, arXiv e-print, 19 Nov (2019);
https://doi.org/10.48550/arXiv.1911.09013.
[15] M. J. Miles, An extremum property of convex functions, Amer. Math.
Monthly, 76 (1969), 921-922.
[16] D. S. Mitrinović, L. B. Lacković, Hermite and convexity, Aequationes Mathematicae, 28, No 3 (1985), 229-232.
[17] M. A. Noor, K. I. Noor, On exponentially convex functions, J. of Orissa
Math. Soc., 38 (2019), 33-51.
[18] M. A. Noor, K. I. Noor, Strongly exponentially convex functions, U. P. B.
Bull. Sci. Appl. Math. Ser. A, 8 (2019), 75-84.
[19] M. A. Noor, K. I. Noor, Strongly exponentially convex functions and their
properties, J. Advanc. Math. Studies, 9, No 2 (2019), 177-185.
[20] J. Pečarić, J. Jakšetić, On exponentially convexity, Euler-Radau expansions and stolarsky means, Rad Hrvat. Matematicke Znanosti, 515, No 17
(2013), 81-94.
[21] M. M. Peixoto, Generalized convex functions and second order differential
inequalitities, Bull. Amer. Math. Soc., 55, No 6 (1949), 563-572.
[22] A. W. Roberts, D. E. Varberg, Convex Functions, Academic Press, New
York (1973).
[23] Y. X. Zhao, S. Y. Wang, L. Coladas Uria, Characterizations of r-convex
functions, J. Optim. Theory Appl., 145 (2010), 186-195.