SMALL LIPSCHITZ PERTURBATION OF SCALAR MAPS
AND LYAPUNOV EXPONENT FOR LIPSCHITZ MAPS

Abstract

In this paper we consider small Lipschitz perturbations for Lipschitz maps. We obtain conditions to ensure the permanence of fixed points (sink and source) for scalar Lipschitz maps without requiring differentiability, in a step norm weaker than the $C^1$-norm and stronger than the $C^0$-norm. Moreover, we also propose conditions in order to guarantee the permanence of periodic points. Additionally, we propose a new definition of Lyapunov exponent for Lipschitz maps which extends, in a natural way, the definition of Lyapunov exponent for differentiable maps.

Citation details of the article



Journal: International Journal of Applied Mathematics
Journal ISSN (Print): ISSN 1311-1728
Journal ISSN (Electronic): ISSN 1314-8060
Volume: 35
Issue: 6
Year: 2022

DOI: 10.12732/ijam.v35i6.1

Download Section



Download the full text of article from here.

You will need Adobe Acrobat reader. For more information and free download of the reader, please follow this link.

References

  1. [1] K.T. Alligood, and T.D. Sauer, J.A. Yorke Chaos: An Introduction to Dynamical Systems, Springer, New York (1996).
  2. [2] M.C. Bortolan, C.A.E.N. Cardoso, A.N. Carvalho, L. Pires, Lipschitz perturbations of Morse-Smale semigroups, J. Diff. Eq., 269, No 15 (2020), 1904-1943; doi:10.1016/j.jde.2020.01.024.
  3. [3] C. Calcaterra, A. Boldt, Lipschitz flow-box theorem, J. Math. Anal. Appl., 338 (2008), 1108-1115; doi:10.1016/j.jmaa.2007.06.001.
  4. [4] M.I. Garrido, J.A. Jaramillo, Y.C. Rangel, Smooth aproximation of Lipschitz functions on Finsler manifold, J. Fun. Sp. App., (2013), 1-10; doi:10.1155/2013/164571.
  5. [5] G.G. La Guardia, P.J. Miranda, Lyapunov exponent for Lipschitz maps, Non. Dyna., 92 (2018), 1217–1224; doi:10.1007/s11071-018-4119-z.
  6. [6] M. Martelli, Chaos: Introduction to Discrete Dynamical Systems and Chaos, Wiley, Hoboken (1999).
  7. [7] J. Palis, W. de Melo, Geometric Theory of Dynamical Systems, Springer Verlag, New York (1982).
  8. [8] S.Y. Pilyugun, The Space of Dynamical Systems with the C0-topology, Springer (1994).
  9. [9] S.Y. Pilyugun, Space of Dynamical Systems, Ser. Studies in Mathematical Physics (2012).
  10. [10] L. Pires, G.G. La Guardia, A Lipschitz version of the λ-Lemma and a characterization of homoclinic and heteroclinic orbits, Qual. Theo. Dyna. Sys., 20, No 82 (2021), 1-15; doi:10.1007/s12346-021-00521-6.
  11. [11] L. Pires, Lipschitz perturbations of the Chafee-Infante equation, J. Math. Anal. Appl., 519 (2023), 1-12; doi:10.1016/j.jmaa.2022.126740.
  12. [12] C. Pugh, The closing lemma, Amer. J. of Math., 89 (1981), 956-1009.
  13. [13] H. Rademacher, Uber partielle und totale differenzierbarkeit, Math. Ann., 79 (1919), 340-359.
  14. [14] K. Takaki, Lipeomorphisms close to an Anosov diffeomorphism, Nagoya Math. J., 53 (1974), 71-82.