In this paper we consider small Lipschitz perturbations for Lipschitz maps.
We obtain conditions to ensure the permanence of fixed points (sink and source) for scalar
Lipschitz maps without requiring differentiability, in a step norm weaker than the -norm
and stronger than the -norm. Moreover, we also propose conditions in order to
guarantee the permanence of periodic points. Additionally, we propose a new
definition of Lyapunov exponent for Lipschitz maps which extends, in a natural way,
the definition of Lyapunov exponent for differentiable maps.
You will need Adobe Acrobat reader. For more information and free download of the reader, please follow this link.
References
[1] K.T. Alligood, and T.D. Sauer, J.A. Yorke Chaos: An Introduction to
Dynamical Systems, Springer, New York (1996).
[2] M.C. Bortolan, C.A.E.N. Cardoso, A.N. Carvalho, L. Pires, Lipschitz perturbations of Morse-Smale semigroups, J. Diff. Eq., 269, No 15 (2020),
1904-1943; doi:10.1016/j.jde.2020.01.024.
[3] C. Calcaterra, A. Boldt, Lipschitz flow-box theorem, J. Math. Anal. Appl.,
338 (2008), 1108-1115; doi:10.1016/j.jmaa.2007.06.001.
[4] M.I. Garrido, J.A. Jaramillo, Y.C. Rangel, Smooth aproximation of Lipschitz functions on Finsler manifold, J. Fun. Sp. App., (2013), 1-10;
doi:10.1155/2013/164571.
[5] G.G. La Guardia, P.J. Miranda, Lyapunov exponent for Lipschitz maps,
Non. Dyna., 92 (2018), 1217–1224; doi:10.1007/s11071-018-4119-z.
[6] M. Martelli, Chaos: Introduction to Discrete Dynamical Systems and
Chaos, Wiley, Hoboken (1999).
[7] J. Palis, W. de Melo, Geometric Theory of Dynamical Systems, Springer Verlag, New York (1982).
[8] S.Y. Pilyugun, The Space of Dynamical Systems with the C0-topology,
Springer (1994).
[9] S.Y. Pilyugun, Space of Dynamical Systems, Ser. Studies in Mathematical
Physics (2012).
[10] L. Pires, G.G. La Guardia, A Lipschitz version of the λ-Lemma and a
characterization of homoclinic and heteroclinic orbits, Qual. Theo. Dyna.
Sys., 20, No 82 (2021), 1-15; doi:10.1007/s12346-021-00521-6.
[11] L. Pires, Lipschitz perturbations of the Chafee-Infante equation, J. Math.
Anal. Appl., 519 (2023), 1-12; doi:10.1016/j.jmaa.2022.126740.
[12] C. Pugh, The closing lemma, Amer. J. of Math., 89 (1981), 956-1009.
[13] H. Rademacher, Uber partielle und totale differenzierbarkeit, Math. Ann.,
79 (1919), 340-359.
[14] K. Takaki, Lipeomorphisms close to an Anosov diffeomorphism, Nagoya
Math. J., 53 (1974), 71-82.