Let be a commutative ring with identity and be an unitary
-module. A ring in which every prime ideal is an intersection of maximal ideals is called Hilbert (or Jacobson) ring. We propose to define modules by the property that primary-like submodules are intersections of maximal submodules which are said to be modules. It is shown that every co-semisimple module is a module. Also, it is shown that an -module is a module if and only if every non-maximal
primary-like submodule of is an intersection of properly larger primary-like submodules.
You will need Adobe Acrobat reader. For more information and free download of the reader, please follow this link.
References
[1] M. Arabi-Kakavand and M. Behboodi, Modules whose classical prime
submodules are intersection of maximal submodules, Bull. Korean, Math.
Soc., 51 (2014), 253-266.
[2] S.A. Amitsur and C. Procesi, Jacobson rings and Hilbert algebras with
polynomial identities, Ann. Mat. Pura Appl., 71 (1966), 61-72.
[3] H. Fazaeli Moghimi and F. Rashedi, Zariski-like spaces of certain modules,
Journal of Algebraic Systems, 1 (2013), 101-115.
[4] H. Fazaeli Moghimi and F. Rashedi, Primary-like submodules and a
scheme over the primary-like spectrum of modules, Miskolc Mathematical
Notes, 18 (2017), 961-974.
[5] M. Ferrero andM.M. Parmenter, A note on Jacobson rings and polynomial
rings, Proc. Amer. Math. Soc., 105 (1989), 281-286.
[6] K. Fujita and S. Itoh, A note on Noetherian Hilbert rings, Hiroshima Math.
J., 10 (1980), 153-161.
[7] O. Goldman, Hilbert rings and the Hilbert Nullstellensatz, Math. Z., 54
(1951), 136-140.
[8] J. Jenkins and P.F. Smith, On the prime radical of a module over a
commutative ring, Comm. Algebra, 20 (1992), 3593-3602.
[9] A. Kaucikas and R. Wisbauer, Noncommutative Hilbert rings, J. Algebra
Appl., 3 (2004), 437-443.
[10] T.Y. Lam, A First Course in Noncommutative Rings, Springer-Verlag,
New York-Berlin-Heidelberg (1991).
[11] C.P. Lu, A module whose prime spectrum has the surjective natural map,
Houston J. Math., 33 (2007), 127-143.
[12] M.Maani Shirazi and H. Sharif, Hilbert modules, Int. J. Pure Appl. Math.,
20 (2005), 1-7.
[13] R.L. McCasland, M.E. Moore and P.F. Smith, On the spectrum of a module over a commutative ring, Comm. Algebra, 25 (1997), 79-103.
[14] R. Wisbauer, Foundations of Modules and Ring Theory, Gordon and
Breach Reading (1991).