MODULES WHOSE PRIMARY-LIKE SUBMODULES ARE
INTERSECTION OF MAXIMAL SUBMODULES

Abstract

Let $R$ be a commutative ring with identity and $M$ be an unitary $R$-module. A ring $R$ in which every prime ideal is an intersection of maximal ideals is called Hilbert (or Jacobson) ring. We propose to define modules by the property that primary-like submodules are intersections of maximal submodules which are said to be $\mathcal{PH} $ modules. It is shown that every co-semisimple module is a $\mathcal{PH} $ module. Also, it is shown that an $R$-module $M$ is a $\mathcal{PH} $ module if and only if every non-maximal primary-like submodule of $M$ is an intersection of properly larger primary-like submodules.

Citation details of the article



Journal: International Journal of Applied Mathematics
Journal ISSN (Print): ISSN 1311-1728
Journal ISSN (Electronic): ISSN 1314-8060
Volume: 35
Issue: 6
Year: 2022

DOI: 10.12732/ijam.v35i6.5

Download Section



Download the full text of article from here.

You will need Adobe Acrobat reader. For more information and free download of the reader, please follow this link.

References

  1. [1] M. Arabi-Kakavand and M. Behboodi, Modules whose classical prime submodules are intersection of maximal submodules, Bull. Korean, Math. Soc., 51 (2014), 253-266.
  2. [2] S.A. Amitsur and C. Procesi, Jacobson rings and Hilbert algebras with polynomial identities, Ann. Mat. Pura Appl., 71 (1966), 61-72.
  3. [3] H. Fazaeli Moghimi and F. Rashedi, Zariski-like spaces of certain modules, Journal of Algebraic Systems, 1 (2013), 101-115.
  4. [4] H. Fazaeli Moghimi and F. Rashedi, Primary-like submodules and a scheme over the primary-like spectrum of modules, Miskolc Mathematical Notes, 18 (2017), 961-974.
  5. [5] M. Ferrero andM.M. Parmenter, A note on Jacobson rings and polynomial rings, Proc. Amer. Math. Soc., 105 (1989), 281-286.
  6. [6] K. Fujita and S. Itoh, A note on Noetherian Hilbert rings, Hiroshima Math. J., 10 (1980), 153-161.
  7. [7] O. Goldman, Hilbert rings and the Hilbert Nullstellensatz, Math. Z., 54 (1951), 136-140.
  8. [8] J. Jenkins and P.F. Smith, On the prime radical of a module over a commutative ring, Comm. Algebra, 20 (1992), 3593-3602.
  9. [9] A. Kaucikas and R. Wisbauer, Noncommutative Hilbert rings, J. Algebra Appl., 3 (2004), 437-443.
  10. [10] T.Y. Lam, A First Course in Noncommutative Rings, Springer-Verlag, New York-Berlin-Heidelberg (1991).
  11. [11] C.P. Lu, A module whose prime spectrum has the surjective natural map, Houston J. Math., 33 (2007), 127-143.
  12. [12] M.Maani Shirazi and H. Sharif, Hilbert modules, Int. J. Pure Appl. Math., 20 (2005), 1-7.
  13. [13] R.L. McCasland, M.E. Moore and P.F. Smith, On the spectrum of a module over a commutative ring, Comm. Algebra, 25 (1997), 79-103.
  14. [14] R. Wisbauer, Foundations of Modules and Ring Theory, Gordon and Breach Reading (1991).