ON THE EQUIVALENCE BETWEEN ERGODICITY
AND WEAK MIXING FOR OPERATORS SEMIGROUPS

Abstract

We prove the equivalence between ergodicity and weak mixing of an invariant probability measure $m$ for strongly continuous contraction semigroups of linear operators on $L^2(m)$ satisfying the sector condition.

The same result is proved for subordinated semigroups in the Bochner sense by the one-sided stable sudordinators.

Citation details of the article



Journal: International Journal of Applied Mathematics
Journal ISSN (Print): ISSN 1311-1728
Journal ISSN (Electronic): ISSN 1314-8060
Volume: 36
Issue: 2
Year: 2023

DOI: 10.12732/ijam.v36i2.1

Download Section



Download the full text of article from here.

You will need Adobe Acrobat reader. For more information and free download of the reader, please follow this link.

References

  1. [1] C. Berg, G. Forst, Potential Theory on locally Compact Abelian Groups, Springer-Verlag, Berlin-Heidelberg-New York (1975).
  2. [2] S. Cambanis, K. Podgorski, A. Weron, Chaotic behavior of infinitely di- visible processes, Studia Math., 115 (1995), 109-127.
  3. [3] J. Carrasso, W. Kato, On subordinated holomorphic semigroups, Trans. Am. Math. Soc., 327 (1991), 867-878.
  4. [4] I.P. Cornfeld, S.V. Fomin, Y.G. Sinai, Ergodic Theory, Springer-Verlag, Berlin-Heidelberg-New York (1982).
  5. [5] G. Da Prato, J. Zabczyk, Ergodicity for Infinite Dimensional Systems, Cambridge University Press (1996).
  6. [6] F. Hmissi, M. Hmissi, Bochner subordination and ergodicity, Grazer Math. Berichte, 346 (2004), 211-221.
  7. [7] M. Hmissi, H. Mejri, E. Mliki, On ergodicty and mixing for subordinated semigroups, Preprint.
  8. [8] N. Jacob, Pseudo Differential Operators and Markov Process, Vol 1: Fourier Analysis and Semigroups, Imperial College Press, London (2001).
  9. [9] T. Kato, Perturbation Theory for Linear Operators, Springer-Verlag, Berlin-Heidelberg-New York (1966).
  10. [10] P. Kokoszka, K. Podgorski, Ergodicity and weak mixing of semistable pro- cesses, Prob. and Math. Stat., 13 (1992), 239-244.
  11. [11] O. Peters, The ergodicity problem in economics, Nat. Phys., 15 (2019), 1216-1221.
  12. [12] O. Peters, A. Adamou, The ergodicity solution of the cooperation puzzle, The Royal Society Collection, 2022.
  13. [13] D. Zhang, H.T. Quan, B. Wu, Ergodicity and Mixing in Quantum Dynam- ics, Phys. Rev. 94, Iss. 2 (2016) 022150.
  14. [14] K. Podgorski, A note on ergodic symmetric stable processes, Stoch. Proc. Appl. 43 (1992), 355-362.
  15. [15] J. Rozinski, T. Zak, The equivalence of ergodicity and weak mixing for infinitely divisible processes, Journal of Theoretical Probability, 10, No 1 (1997), 73-86.
  16. [16] K. Sato, Processes and Infinitely Divisible Distributions, Cambridge Uni- versity Press (1999).
  17. [17] R. Schilling, R. Song, Z. Vondracek, Bernstein Functions. Theory and Ap- plications, De Gruyter Studies in Mathematics 37 (2010).
  18. [18] M.L. Silverstein, Application of the sector condition to the classification of sub- Markovian semigroups, Trans. Amer. Math. Soc., 244 (1978), 103- 146.
  19. [19] A. Vanhoyweghen, B. Verbeken, C. Macharis, et al., The influence of er- godicity on risk affinity of timed and non-timed respondents, Sci. Rep., 12 (2022), 3744.
  20. [20] K. Yoshida, Functional Analysis, Springer-Verlag, Berlin-Heidelberg-New York (1965).